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Abstract

Modern non-invasive brain imaging technologies, such as diffusion weighted

magnetic resonance imaging (DWI), enable the mapping of neural fiber tracts

in the white matter, providing a basis to reconstruct a detailed map of brain

structural connectivity networks. Brain connectivity networks differ from

random networks in their topology, which can be measured using small world-
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ness, modularity, and high-degree nodes (hubs). Still, little is known about

how individual differences in structural brain network properties relate to

age, sex, or genetic differences. Recently, some groups have reported brain

network biomarkers that enable differentiation among individuals, pairs of in-

dividuals, and groups of individuals. In addition to studying new topological

features, here we provide a unifying general method to investigate topologi-

cal brain networks and connectivity differences between individuals, pairs of

individuals, and groups of individuals at several levels of the data hierarchy,

while appropriately controlling false discovery rate (FDR) errors. We apply

our new method to a large dataset of high quality brain connectivity net-

works obtained from High Angular Resolution Diffusion Imaging (HARDI)

tractography in 303 young adult twins, siblings, and unrelated people. Our

proposed approach can accurately classify brain connectivity networks based

on sex (93% accuracy) and kinship (88.5 % accuracy). We find statistically

significant differences associated with sex and kinship both in the brain con-

nectivity networks and in derived topological metrics, such as the clustering

coefficient and the communicability matrix.

Keywords: Anatomical brain connectivity, complex networks, diffusion

weighted MRI, topological analysis, hierarchical analysis, false discovery

rate, sex and kinship brain network differences.
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1. Introduction1

Modern non-invasive imaging technologies such as Diffusion Weighted2

Magnetic Resonance imaging (DWI) make it possible to estimate the lo-3

cal orientation of neural fiber bundles in the white matter, providing reli-4

able anatomical information on brain connectivity and anatomical networks5

(Iturria-Medina et al., 2007; Hagmann et al., 2008, 2007; Gigandet et al.,6

2008; Bullmore and Bassett, 2010; Bullmore and Sporns, 2009; Bassett et al.,7

2011). Topological properties of complex networks, such as those describing8

brain connectivity, have been analyzed and compared to random networks9

using traditional (Rubinov and Sporns, 2010; Boccaletti et al., 2006; Sporns10

and Kotter, 2004; Onnela et al., 2005; Blondel et al., 2008) and new topolog-11

ical metrics (Easley and Kleinberg, 2010; Lohmann et al., 2010; Shepelyan-12

sky and Zhirov, 2010; Bullmore and Bassett, 2010; Bassett et al., 2010, 2011;13

Estrada, 2010; Estrada and Higham, 2010). Still, relatively little is known14

about how functional and structural brain networks differ between different15

populations, and how their properties are associated with, for example, age,16

sex, and genetic factors. Large datasets, as presented here, are vital for mak-17

ing robust statements about network properties and factors that consistently18

affect them.19

Recent work has identified effects of sex, age, heritability, and neurologi-20

cal disorders on some aspects of brain networks derived from structural and21

functional MRI. Pattern recognition methods, such as feature selection, di-22

mension reduction, and classification, have been used to predict brain matu-23

rity (Dosenbach et al., 2010; Thomason et al., 2011) and activity (Richiardi24

et al., 2010) from functional MRI (fMRI), and also the effects of aging on25
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brain connectivity measured from DWI scans (de Boer et al., 2011). In re-26

cent work, we identified significant sex and genetic differences using network27

data at the edge (node-to-node connectivity) level, from Diffusion Tensor28

Imaging (DTI) (Jahanshad et al., 2010) and High Angular Resolution Dif-29

fusion Imaging (HARDI) scans (Jahanshad et al., 2011). In general, these30

anatomical studies create a connectivity matrix that describes the proportion31

of detected brain fibers that interconnect all pairs of regions, taken from a32

set of regions of interest. This results in a matrix of connectivity values, that33

can be treated as an N ×N image and analyzed using voxel-based statistical34

analysis approaches (Jahanshad et al., 2011). Additional studies have re-35

ported age and sex differences in DWI data and in global topological metrics36

(Gong et al., 2009); genetic effects (Fornito et al., 2011). Abnormalities37

in patients with schizophrenia (Rubinov and Bassett, 2011) have also been38

reported in connectivity studies using fMRI.39

Here we propose a unifying, robust and general method to investigate40

brain connectivity differences among individuals, pairs of individuals, and41

groups of individuals (classes), at several levels of the network hierarchy:42

global, node, and node-to-node or network subgraphs. We use robust pat-43

tern recognition techniques to identify brain connectivity/network differences44

at the individual level (which also includes pairs of individuals). We also45

describe families of hypothesis tests to identify differences at the group or46

class level. We apply this method to a large dataset of high quality brain47

connectivity networks, obtained from HARDI. This allows us to study orga-48

nizational differences between the human brain and random networks, and49

brain connectivity differences associated with sex and kinship.50
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Our method has the following unique characteristics:51

• Robust feature selection using Support Vector Machines (SVMs) and52

n-fold cross-validation.53

• Robust overall classification performance evaluation using n-fold cross-54

validation and permutation tests.55

• Hierarchical analysis of brain connectivity network differences, simul-56

taneously studying the networks at multiple structural levels.57

• Robust overall control of the false discovery rate (FDR) error, especially58

with hierarchies of multiple families of hypothesis tests.59

• Analysis of a large high quality dataset that involves a robust normal-60

ization step.61

Using this method, we set out to answer the following questions (research62

lines):63

1. Can we classify individuals in terms of sex or pairs of individuals in64

terms of kinship using the HARDI-derived connectivity matrices?65

2. Can we classify individuals in terms of sex or pairs of individuals in66

terms of kinship using topological measures of the associated network67

digraphs?68

3. Are there any differences in the connectivity matrices attributable to69

sex differences or kinship?70

4. Do brain connectivity networks and random networks differ in topol-71

ogy?72
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5. Is some proportion of the variance in brain network topology attributable73

to sex or kinship?74

This study of sex and kinship from connectivity networks illustrates the75

framework and address key biological questions.76

The topological metrics considered here can be arranged in a hierarchical77

tree, from global to node-to-node (Figure 1). Network differences at the78

individual level (including pairs of individuals) are covered by the proposed79

research lines 1 and 2. Research lines 3 and 5 refer to class (sex and kinship)80

properties. We also look for global topological differences between real and81

random networks, research line 4, as these have been frequently reported82

in the literature (Iturria-Medina et al., 2007; Gong et al., 2009; Bassett83

et al., 2010; Fornito et al., 2011; Bassett et al., 2011). Here, we study brain84

connectivity differences using a wide variety of traditional and recent global,85

cortical (node), and inter-cortical (node to node) topological metrics not used86

before on a single large scale study of high quality diffusion MRI data.87

Our relatively large number of high quality diffusion MRI data allows us88

to consider more related individuals than have been studied before for ana-89

lyzing structural connectivity. We consider all possible pair-wise comparisons90

between the different kinships.91

The rest of the paper is organized as follows: Section 2 describes the diffu-92

sion MRI data we analyze. we describe how the data is processed to produce93

the anatomical brain connectivity information and networks. Section 3 in-94

troduces the questions we address and our proposed approach using robust95

pattern recognition methods and multiple hypothesis testing, while control-96

ling the FDR. Section 4 reports results for sex and kinship classification97
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based on the brain connectivity matrices and network topology measures.98

Section 4 also presents results of hypothesis tests on the brain connectivity99

and brain topological network differences due to sex and kinship, as well as100

topological differences between human and random brain networks. Section101

5 discusses the results, and some caveats and limitations. Section 6 presents102

the conclusions of this work.103

2. Estimation of Brain Structural Connectivity104

2.1. Diffusion MRI Data Acquisition and Processing105

The raw data set consists of 4 Tesla HARDI and standard T1-weighted106

structural MRI images, for 303 individuals (193 women and 110 men), be-107

tween 20 and 30 years old (mean age: 23.5 ± 1.9 SD years). From these108

subjects, we are able to form different pair-wise kinship relationships be-109

tween identical twins (50), non-identical multiples (64 non-identical twins110

and a non-identical triplet, forming 67 pair-wise relationships), and non-twin111

siblings (35).1 In addition, there are 35 unrelated individuals, from whom we112

can obtain (35 × 34)/2 = 595 pairs of unrelated people, but we only choose113

at random 100 of them, to avoid unbalancing the number of pairs chosen114

for each class. In summary, we have 50 + 67 + 35 + 100 = 252 pair-wise115

relationships for our kinship analysis.116

All MR images were collected using a 4 Tesla Bruker Medspec MRI scan-117

ner, with a transverse electromagnetic (TEM) head coil, at the Center for118

1The group of non-twin siblings overlaps the group of twins and triplets, since an

individual can have 2 or more siblings that are twins (or triplets).
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Magnetic Resonance, University of Queensland, Australia. T1-weighted im-119

ages were acquired with an inversion recovery rapid gradient echo sequence120

(TI/TR/TE = 700/1500/3.35 ms; flip angle=8 ◦; slice thickness = 0.9 mm,121

with a 2563 acquisition matrix). Diffusion-weighted images were acquired122

using single-shot echo planar imaging with a twice-refocused spin echo se-123

quence to reduce eddy-current induced distortions. Imaging parameters were:124

TR/TE = 6090/91.7 ms, 23 cm FOV, with a 128× 128 acquisition matrix.125

Each 3D volume consisted of 55 2-mm thick axial slices with no gap, and126

a 1.79× 1.79mm2 in-plane resolution. We acquired 105 images per subject:127

11 with no diffusion sensitization (i.e., b0 images) and 94 diffusion-weighted128

(DW) images (b = 1159 s/mm2) with gradient directions evenly distributed129

on the hemisphere, as is required for unbiased estimation of white matter130

fiber orientations. Scan time was 14.2 minutes. Non-brain regions were au-131

tomatically removed from each T1-weighted MRI scan, and from a b0 image132

obtained from the DWI data set using the BET FSL tool.2 A trained neu-133

roanatomical expert manually edited the T1-weighted scans to further refine134

the brain extraction. All T1-weighted images were linearly aligned using135

FSL (with 9 DOF3) to a common space, (Holmes et al., 1998), with 1mm136

isotropic voxels and a 220× 220× 220 voxel matrix.137

Raw diffusion-weighted images were corrected for eddy current distortions138

using the eddy currents distortions correction FSL tool. For each subject,139

the 11 non-diffusion-weighted images (with no diffusion sensitization) were140

2http://fsl.fmrib.ox.ac.uk/fsl/
3The expected deformations are only translation, rotation, and anisotropic scaling; no

shearing between T1s of the same subject.
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averaged and resampled and linearly aligned to a down-sampled version of141

the same subject, corresponding to a T1-weighted anatomical image (110×142

110× 110, 2× 2× 2mm). Averaged b0 maps were then elastically registered143

to the structural scan using an inverse consistent registration algorithm with144

a mutual information cost function, (Leow et al., 2005), to compensate for145

high-field echo-planar imaging (EPI) induced susceptibility artifacts. This146

elastic registration further refines the linear intra-subject registration.147

Thirty-five cortical labels per hemisphere (Table S1, in the supplementary148

material) were automatically extracted from all high resolution aligned T1-149

weighted structural MRI scans using FreeSurfer4 (Fischl et al., 2004). The150

output labels from FreeSurfer (1-35) for each hemisphere were combined into151

a single image. As a linear registration is performed within the software,152

the resulting T1-weighted images and cortical models were aligned to the153

original T1 input image space and down-sampled using nearest neighbor154

interpolation (to avoid intermixing of labels) to the space of the DWIs. To155

ensure tracts would intersect labeled cortical boundaries, labels were dilated156

simultaneously (to prevent overlap) with an isotropic box kernel of 5 voxels.157

Tractography is performed by randomly choosing seed voxels of the white158

matter with a prior probability based on the fractional anisotropy (FA) value159

derived from the diffusion tensor model (Basser and Pierpaoli, 1996). We160

use a global probabilistic approach inspired by the voting procedure of the161

popular Hough transform (Gonzales and Woods, 2008; Duda and Hart, 1972).162

The tractography algorithm tests a large number of candidate 3D curves163

4http://surfer.nmr.mgh.harvard.edu/
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originating from each seed voxel, assigning a score to each, and returns the164

curve with the highest score as the estimated pathway. The score of each165

curve is computed from the agreement between the estimated curve and166

fiber orientations as derived from the Orientation Distribution Functions167

(ODFs) (Aganj et al., 2011). At each voxel of the DWI dataset, ODFs are168

computed using the normalized and dimensionless ODF estimator, derived169

for HARDI in Aganj et al. 2011, which is mathematically more accurate and170

also outperforms the original Q-Ball Imaging (QBI) definition (Tuch, 2004),171

e.g., it improves the resolution of multiple fiber orientations (Aganj et al.,172

2011).173

As it is an exhaustive search, this algorithm avoids entrapment in local174

minima within the discretization resolution of the parameter space. Further-175

more, the specific definition of the candidate’s tract score attenuates noise176

by integrating the real-valued local votes derived from the diffusion data.5177

Further details of the method can be found in (Aganj et al., 2011).178

Elastic deformations obtained from the EPI distortion correction, map-179

ping the average b0 image to the T1-weighted image, were then applied to180

the tracts 3D coordinates. To avoid considering small noisy tracts, tracts181

with fewer than 15 fibers were filtered out.182

5In the near future, this algorithm will be released through the Neuroimaging Informat-

ics Tools and Resources Clearinghouse (NITRC) online repository, and is available upon

request.
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2.2. Computing Connectivity Matrices and Brain Networks183

From the cortical labeling and tractography, symmetric matrices of con-184

nectivity (70×70) are built, one per subject. Each entry contains the number185

of fibers connecting each pair of cortical regions (Table S1) within and across186

each brain hemisphere. Connectivity matrices based on fiber counts should187

always be normalized to the [0, 1] range, as the number of fibers detected188

varies from individual to individual. In addition, there is a bias in the number189

of fibers detected by tractography that start or end in any given cortical re-190

gion, due to fiber crossings, fiber tract length, volume of the cortical region,191

and proximity to large tracts like the corpus callosum (Jahanshad et al.,192

2011; Hagmann et al., 2008, 2007; Bassett et al., 2011). However, there is no193

unique way to normalize the fiber tract count (Bassett et al., 2011).194

We decided not to use the normalizations proposed in (Hagmann et al.,195

2008, 2007; Bassett et al., 2011), as they involve geometric measures includ-196

ing the volume of the cortical regions and the mean path length of fibers197

connecting each two regions. Instead, we considered three purely topologi-198

cal normalizations, since, as in (Gong et al., 2009), we want to find pure199

topological network differences due to, e.g., sex and kinship:200

wij =
aij∑
ij aij

, (1)

wij =
aij√∑

j aij
∑

i aij
, (2)

wij =
aij∑
j aij

, (3)

where, aij represents the entries in the original fiber count matrix, A, and201
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wij the entries (weights) of the now normalized 70× 70 connectivity matrix,202

W .203

Equation (1) (used in our previous work, Jahanshad et al. 2011) nor-204

malizes the fiber count for each pair of regions by the total number of fibers205

in the entire brain, reducing variability among the connectivity matrices due206

to differences in the total number of fibers found. In practice, this normal-207

ization can provide biased weights, since it does not take into account that208

a higher number of fibers will be found in some regions, e.g., in the vicinity209

of the corpus callosum, and also more fibers would be counted in cortical210

regions with larger areas (Hagmann et al., 2008; Bassett et al., 2011).211

Equation (3), first proposed by Behrens et al. 2007 in the context of trac-212

tography, can be interpreted as the probability of connecting cortical regions213

i and j, given that there are aij fibers between them and there are
∑

j aij214

fibers available on cortical region i. Equation (2), (Crofts and Higham,215

2009), divides the number of fibers between any two cortical regions by the216

geometric mean of the number of fibers leaving either region. The assump-217

tion here is stronger than that of Equation (3), as it assumes the same total218

number of fibers on each pair of brain regions. This can lead to bias due to219

large differences in the total number of fibers on each region (locally), but220

it should be correct on average (globally). An equivalent normalization was221

used in (Gong et al., 2009), where instead of the geometric mean, they used222

an arithmetic mean, averaging wij and wji on Equation (3).223

Equations (1) and (2) lead to undirected connectivity graphs, which are224

typical in structural brain connectivity analysis. Equation (3), on the other225

hand, leads to directed graphs (digraphs). To see this, note that in general226
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∑
i aij 6=

∑
j aij, i.e. the total number of fibers on cortical regions i and j227

can be different on either side of the connection, hence, in general, wij 6= wji228

on Equation (3). Normalizations (1)-(3) are further modified as
wij

max{wij} ,229

where wij is defined as indicated in equations (1)-(3), in order to reduce the230

differences among different connectivity matrices (different subjects), thereby231

making max{wij} = 1. Equations (2), (3), modulated by max{wij}, reduce232

significantly the mean effect of brain size differences between men and women233

(see the regression analysis in the Appendix), which is a known confounding234

factor in analyses of sex differences (Leonard et al., 2008).235

Here, we work with the normalization provided by Equation (3),6 because236

it reduces the effect of brain size. Connectivity matrices are asymmetric - this237

coming from the normalization and not from the tractography results. This is238

beneficial as it uses all available entries in the matrix, while traditional sym-239

metric matrices, as obtained from the other two normalizations, only use half240

of the matrix to store network information. This extra information is not an241

artifact of the normalization - it provides more information about differences242

between two connected brain regions. Two cortical regions are connected by243

the same number of fibers, but the proportion of fibers dedicated to that244

particular connection can be very different within each cortical region. For245

instance, consider the case where cortical region i connects exclusively to246

region j, but region j connects not only to i, but also to many other regions.247

In terms of probability of connection, pij = 1, pik = 0, k 6= j, since i connects248

6The basic method introduced later for analyzing brain networks, in particular the

features for undirected networks and the statistical analysis, can still be applied to the

other possible normalizations as well.
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exclusively to j (pij being the probability of connecting region i with region249

j). However, pji < 1, and pjk 6= 0 for some k regions, satisfying in both cases250 ∑
i pij =

∑
j pjk = 1 (all the regions must be connected), hence, pij 6= pji. In251

the general case, each cortical region connects to a different number of other252

cortical regions, so in general, pij 6= pji, as on Equation (3). We consider253

that capturing this asymmetry in the connectivity matrices W is important,254

and this is validated in the experimental results.255

In summary, we derived 303, one per subject, normalized connectivity256

(network) 70 × 70 matrices W , by applying probabilistic tractography to257

HARDI at 4T. These matrices provide our basis for studying anatomical258

brain connectivity, as described next.259

3. Methods260

The research lines addressed here (see the Introduction) are independent261

as they answer different questions and there is no interaction or inference262

among them. It is important to state the independence of these research263

lines, as it implies that there is no need for an overall FDR error control, other264

than the FDR control on each research line (Benjamini and Hochberg, 1995;265

Yekutieli, 2008). The first two research lines are addressed simultaneously266

using robust pattern recognition methods that extend well to unobserved267

data (Section 3.1). The last three research lines are going to be addressed268

using statistical hypothesis testing (non-parametric bootstrap), where the269

corresponding null hypotheses are stated as:270

1. There are no differences in the connectivity matrix. Given that there271

are O(n2) weights on a connectivity matrix of n nodes, there are O(n2)272
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local null hypothesis to be tested, one for each connection, forming a273

large family of hypothesis testing. As n = 70 in our case, we could274

have up to 4900 hypotheses to test for differences in the connectivity275

matrices.7276

2. There are no global topological differences between real networks and277

random networks. In general, we can have m global topological metrics278

(see Figure 1 and Section 3.2 for details), forming a single family of279

hypothesis testing.280

3. There are no topological differences, at any scale, on the directed net-281

works due to sex or kinship (Figure 1). Hence, we have m hypotheses282

to test at the global level, possibly m families of hypothesis at the node283

level (one for each global hypothesis), having each one O(n), n = 70,284

null hypothesis to test for differences at each node, and several families285

of hypotheses at the node-to-node level, where each family corresponds286

to a topological metric at the node-to-node level (Figure 1), and each287

family consists of O(n2) hypothesis to test, one for each pair of nodes.288

The first two null hypotheses require only a single (albeit possibly large)289

family of hypothesis tests, while the last one requires several families of hier-290

archically related hypothesis tests, where families of hypotheses at the node-291

to-node level can consist of O(n2) local hypotheses (up to 4900 hypotheses292

in our case, n = 70).293

7Of course, we only look for statistically significant differences where the number of

connections detected is more than zero.
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At the population level, we consider only average network differences in294

the connectivity matrix (research line 3, see Introduction), or in the topo-295

logical metrics of the associated graphs (research line 5 in the Introduction),296

resulting from sex and kinship, as we know a priori that the variability297

between the connectivity matrices of individuals can be as large as the vari-298

ability between the connectivity matrices within the same group (same sex299

or same kinship relationship) – an observation derived both from previous300

studies, (Bassett et al., 2011), and from our own dataset.301

We consider the two classes women and men, based on sex; and the302

four classes identical twins, non-identical multiples, non-twin siblings , and303

unrelated individuals, based on kinship relationships. These are used for304

classification at the individual (including pairs of individuals for kinship)305

level and for hypothesis testing at the group level.306

Our analysis of kinship follows previous genetic studies of brain connectiv-307

ity (Jahanshad et al., 2011, 2010; Rubinov and Bassett, 2011; Fornito et al.,308

2011; Thompson et al., 2001). One traditional line of analysis in genetic309

studies uses a classical twin design to compute intra-pair (or intra-class) cor-310

relations between measures of cortical gray matter density (Thompson et al.,311

2001), connectivity matrices (Jahanshad et al., 2011, 2010), or wavelets rep-312

resenting the connectivity matrices (Fornito et al., 2011), however, these313

correlation operations reduce the data to a single matrix of correlations, and314

heritability statistics for all pairs of subjects in the same group.315

For kinship analysis, we work with the absolute value of the differences316

in the connectivity matrix and with network differences in the topological317

metrics considered, between pairs of individuals. These pair-wise differences318
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are differences between pairs of identical twins, differences between pairs319

of non-identical multiples, differences between siblings who are not twins,320

and finally differences between pairs of unrelated people. We use pairwise321

differences within and across families, as they allow us to detect genetically-322

mediated effects in pairings with different degrees of known genetic affinity323

(Thompson et al., 2001).324

To avoid losing pairs of subjects in the kinship analyses, we did not con-325

strain the pairwise differences between individuals to be of the same sex,326

which in our study corresponds approximately to half the non-identical mul-327

tiples considered. The statistical power of the tests of kinship differences328

might be reduced by the confounding effects of sex differences, but at the329

same time, we are also increasing the statistical power of the test (Winer,330

1971), by considering a larger number of pairwise differences.331

3.1. Classification332

Here, we want to classify individual brain connectivity networks in terms333

of sex (women and men) and pairs of individuals in terms of kinship, using334

the connectivity matrices or the associated network topology metrics at the335

node or node-to-node level.336

In classification, we encounter the multiple comparisons problem (MCP),337

which arises whenever we test multiple hypotheses simultaneously. If we338

do not correct for this, then the more hypotheses tested, the higher the339

probability of obtaining at least one false positive.340

This can be dealt with in classification via n-fold cross-validation. In341

fact, cross-validation can be more effective than Bonferroni-type corrections342

(Jensen and Cohen, 2000), as it does not test on the same data used to derive343
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the model. Here we use 10-fold cross-validation, a good trade-off between344

robustness to unobserved data and using as much data as possible to train345

the classifiers (Refaeilzadeh et al., 2009). In addition to cross-validation, we346

also use permutation tests (see Appendix for details), to non-parametrically347

evaluate the null hypothesis that the classifiers might have obtained good348

classification accuracies just by chance (Ojala and Garriga, 2010). In this349

work, we use Support Vector Machine (SVM) classifiers, as they extend well350

to unobserved data, (Vapnik, 1998), and deal with the MCP problem by351

reducing the number of comparisons to the number of support vectors.352

Given the high dimensionality (Rn2
, n = 70 nodes) of the brain connec-353

tivity networks and associated topological metrics consider here (see Section354

3.2 for their full description), we use feature selection methods to reduce the355

effective dimensionality of the data. We call here feature, any of the connec-356

tivity or topological network differences at the node-to-node and single node357

levels. Feature selection methods can significantly improve classification ac-358

curacy, even for classifiers that exploit the higher discrimination possibilities359

in high dimensional spaces, such as SVMs (Vapnik, 1998; Guyon and Eliseeff,360

2003). In general, there are three methods used for feature selection: filters,361

wrappers, and embedded methods (Guyon and Eliseeff, 2003). Filter meth-362

ods employ a ranking criteria such as the Pearson cross-correlation (used363

for example in Dosenbach et al. 2010), Mutual Information, Fisher criterion,364

and so on, and a given threshold to filter out low ranked features. Wrap-365

pers use the classifier itself to evaluate the importance of each feature and366

explore the whole feature space using for instance, gradient based methods,367

genetic algorithms or greedy algorithms. Filter methods are very fast and368
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independent of the selected classifier, however, they can lead to the selec-369

tion of redundant features (Guyon and Eliseeff, 2003). They also disregard370

features with relatively small individual influence that can potentially have371

an influential effect as a group. Wrappers, on the other hand, can avoid372

redundant features and identify influential subgroups of features. However,373

they are computationally intensive, since the subset feature selection prob-374

lem is NP-hard (Amaldi and Kann, 1998), and are strongly dependent on375

the classifier used (Guyon and Eliseeff, 2003). Embedded methods also use376

a classifier to evaluate the importance of subgroup of features. Hence, they377

are wrappers. However, they provide a trade-off between other wrappers and378

filter methods, in terms of computational efficiency and reduced number of379

features, since they introduce a penalty term that enforces small number of380

features (Guyon and Eliseeff, 2003).381

An alternative to feature selection methods are dimension reduction meth-382

ods such as Principal Components Analysis (PCA) and Independent Compo-383

nent Analysis (ICA). See Hartmann 2006, for a comparison of both methods384

in the context of machine learning. Here, we preferred feature selection meth-385

ods, as the features in dimension reduction methods are in general functions386

of the original features,8 and cannot be associated to a unique “physical”387

feature in the original data space. In particular, we use the SVM-based em-388

bedded feature selection algorithm proposed by Guyon et al. 2002. When389

selecting features with a classifier there is a risk of “double-dipping,” i.e.,390

training the feature selection algorithm and testing it with the same data,391

8PCA for instance is a projection of the original features onto the matrix eigen-space,

and hence is a linear combination of the original features.
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which leads to unrealistic high accuracies (over-fitting) that do not extend392

well to unseen data (Kriegeskorte et al., 2009; Refaeilzadeh et al., 2009). To393

avoid this, the feature selection algorithm uses 10-fold cross-validation,9 se-394

lecting the features that contributes more to classification, but that are also395

more stable across the different cross-validation sets of data (Kriegeskorte396

et al., 2009; Refaeilzadeh et al., 2009). In the proposed framework, feature397

selection algorithms extract the m � n2 most relevant features from the398

digraph matrices taken as high-dimensional vectors in Rn2
, n = 70, then use399

the m selected features to classify the reduced features in Rm.400

We tested classification performance using the following standard mea-401

sures:402

• The overall classification accuracy.403

• The sensitivity and specificity.10
404

• The balanced error rate (BER), which corresponds to the average of405

the errors on each class.406

• The area under the receiver operating characteristic (ROC) curve, which407

measures the probability that the classifier can actually discriminate408

the true class from the incorrect one(s).409

9Training with 90% of the data and testing on the remaining 10%, and repeating the

process 10 times with randomly selected training and testing samples.
10As it is usual in binary classification, we report sensitivity and specificity for women

only, given that the sensitivity for men is numerically the same as the specificity for women

and the specificity for men is numerically the same as the sensitivity for women.
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• The kappa statistic, which measures the agreement of the classifier with410

the labels taking into account the probability that the agreement has411

been obtained by chance. It uses the confusion matrix to make this412

assessment.413

• Permutation tests p-values, which non-parametrically assess the prob-414

ability that the classification results were obtained by chance by esti-415

mating the null hypothesis distribution.416

For space considerations, the confusion matrices were not included here, and417

can be found in the supplementary material.418

3.2. Topological Metrics419

In addition to studying node-to-node connections, e.g., just the entries420

of the matrix W as stand-alone features, we would like to consider features421

that indicate higher levels of interactions between the studied regions.422

As we do not know a priori which topological metrics would provide sta-423

tistically significant differences between different classes of brain connectivity424

networks, we have to limit ourselves to a few selected ones, to control the425

FDR error within each research line. We consider 11 representative topolog-426

ical metrics at the global, node, and node-to-node level (Figure 1). While427

some have been studied for brain networks, all these topological features428

have found relevance in other disciplines, such as social networks (Easley429

and Kleinberg, 2010), and provide interesting insights into the overall orga-430

nization of the brain.431
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3.2.1. Node-to-node Level432

At the node-to-node level we consider the edge betweenness centrality433

(EBC), a new subgraph based centrality (SGC), and the communicability434

measures (COM) (Estrada and Higham, 2010; Estrada, 2010). The weighted435

edge betweenness centrality is defined as (Rubinov and Sporns, 2010),436

EBCij =
∑
hk

ρijhk
ρhk

, (4)

where ρijhk is the number of shortest paths between nodes h and k that contain437

edge ij and ρhk is the number of shortest paths between h and k. EBC438

measures the fraction of all shortest paths in the network that contain edge439

ij, and hence, the importance of each edge in the communication among440

cortical regions.441

To understand the subgraph centrality (SGC) and communicability (COM)442

measures (Estrada and Higham, 2010; Estrada, 2010), let us first decompose443

the connectivity matrix as W = ΛW + W̃ , where ΛW is a diagonal matrix,444

with non-zero entries corresponding to the diagonal of W , and W̃ is the re-445

sulting matrix of making zero the diagonal of W . Notice that ΛW contains446

the self-connections of each node, while W̃ the connections between each pair447

of nodes. Let us define (Estrada and Higham, 2010; Estrada, 2010),448

P̃ =
∞∑
k=1

W̃ k

k!
= eW̃ − In,

[
W̃ k
]
ij

=
∑

i,h1,...,hk−1,j

w̃ih1w̃h1h2 . . . w̃hk−1j, (5)

where, In is the identity matrix of size n×n and we have used the definition449

of the exponential of a matrix. The product w̃ih1w̃h1h2 . . . w̃hk−1j measures the450

strength of the walk (i, h1, . . . , hk−1, j) of length k, between nodes i and j. A451
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walk is a list of connected nodes that can be visited more than once, contrary452

to a path, where the nodes are visited at most once. Hence, the elements453

of W̃ k accounts for the strength of all possible walks of length k between454

nodes i and j. Also, the entries of P̃ correspond to the weighted sum of the455

strength of all possible walks of length one and higher, between nodes i and456

j, providing thus a measure of how strong the communication is between457

them (communicability, Estrada and Higham 2010; Estrada 2010). Given458

that the number of walks increases with length, the weight k! is selected to459

compensate for this effect, penalizing long walks.460

Now, we can define (Estrada and Higham, 2010; Estrada, 2010),461

SGCi = [ΛP̃ ]ii, COMij = P̃ij, i 6= j. (6)

Hence, the subgraph centrality of a node SGCi corresponds to the commu-462

nicability of a node with itself, while COMij corresponds to the communica-463

bility between two different nodes i 6= j.464

Notice that the diagonal of matrix P̃ is a weighted sum of all closed walks465

(information transfer) of lengths two and higher around each node. The466

information provided by the closed walks of length zero in the connectivity467

matrix (ΛW ) is lost, however, since it is not used anywhere. To recover it,468

we define here P = P̃ + ΛW as the generalized communicability matrix, since469

it provides all possible communications among all nodes of length zero and470

above, without including self-loops other than the one in the starting node471

itself.472

The communicability matrix has no zero entries, except along the diago-473

nal, which implies 4900-70 (4830) hypothesis tests for our data (n = 70), one474
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for each non-zero entry. Hence, a spectral analysis of the communicability475

matrix can be performed, (Estrada, 2010; Crofts and Higham, 2009), to ob-476

tain a family of tests of order O(n), where n are the number of eigenvalues of477

the communicability matrix. In particular, the above defined matrix COM478

can be decomposed in terms of its eigenvalues and eigenvectors as479

COM =
n∑
k=1

λkv
T
k vk, (7)

where λk are the eigenvalues of COM , and vk its eigenvectors, k = 1, . . . , n.480

3.2.2. Global and Node Levels481

The undirected network efficiency (E) and clustering coefficient (C), have482

been previously reported as indicative of sex and age differences (Gong et al.,483

2009). Here, we use the directed weighted versions, defined as (Rubinov and484

Sporns, 2010),485

E =
1

n

∑
i

Ei, Ei =

∑
j 6=i d

−1
ij

n− 1
, (8)

486

C =
1

n

∑
i

Ci, Ci =
1
2

∑
j,h∈Ni

(wihwhjwji)
1/3

k(k − 1)− 2
∑

j δijδji
, (9)

487

δij =

 0 if wij = 0

1 if wij > 0
, k =

∑
j

(δij + δji)

where, n represents the number of nodes, dij the weighted directed shortest488

path length between nodes i and j, and Ni the neighborhood of node i (nodes489

connected to node i by a single link). Network efficiency measures how fast490

information can be transmitted in the network, globally (E), and locally at491

each node (Ei). The clustering coefficient measures how much nodes in a492

graph tend to cluster together, globally (C) and locally at the node level493
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(Ci). Basically, the directed weighted clustering coefficient measures the494

probability that neighbors of a node are also connected between themselves,495

hence, forming clusters around a node.496

Additional traditional topological metrics at the global and node levels497

are the weighted directed betweenness centrality (BC), weighted modularity498

(Q), and motifs (Rubinov and Sporns, 2010). The weighted directed node499

betweenness centrality is defined as (Rubinov and Sporns, 2010),500

BC =
1

(n− 1)(n− 2)

∑
i

BCi, BCi =
∑

h,j∈Ni;i6=j 6=h

ρihj
ρhj

, (10)

where, ρihj represents the number of shortest paths from nodes h and j that501

go through i, and ρhj the total number of shortest paths between h and j.502

The directed weighted node betweenness centrality measures how important503

each node is in the communication between neighboring nodes.504

The weighted modularity (Q) is defined as (Rubinov and Sporns, 2010),505

Q =
1

lw

∑
ij

[
wij −

∑
iwij

∑
j wij

lw

]
δMi,Mj

, lw =
∑
ij

wij, (11)

where the network is assumed to be fully subdivided into non-overlapping506

clusters or modules (M), with Mi being the module that contains node i,507

and δMi,Mj
= 1 if Mi = Mj and zero otherwise. This is a global measure508

of the modularity of the network, that is, how tightly nodes are connected509

within a module. Identifying modules is of course a first step in analyzing510

the structure of the brain at a higher scale. This global topological mea-511

sure has a local hierarchical representation, where we can have hierarchies of512

modules (clusters). Modules can be found using, for instance, the Louvain513
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hierarchical modularity algorithm (Blondel et al., 2008), a graph partitioning514

algorithm that tries to find the partition maximizing Equation (11). Since515

graph partitioning is in general an NP-complete problem, the Louvain algo-516

rithm computes a local optimum by greedy optimization. Figure S1, in the517

supplementary material, is an example of hierarchical module graph parti-518

tioning using the full data set.519

Network motifs, (Rubinov and Sporns, 2010; Onnela et al., 2005), are520

also topological metrics that measure the intensity or frequency of certain521

subgraph patterns such as directed connections forming a triangle, a square,522

etc. The intensity of a weighted motif (Fmotif ) is defined as,523

Fmotif =
∑
h

F h
motif , F h

motif =
( ∏

(i,j)∈Lh
motif

wij

) 1
|Lmotif | , (12)

where motif indicates a given motif, h a node, Lhmotif the set of nodes forming524

the motif at node h, and |Lmotif | the number of directed links in the motif.525

Motifs are considered the building blocks of information processing in the526

network and can be measured globally (Fmotif ) or locally at the node level527

(F h
motif ). Figure S2, in the supplementary material, shows the 13 possible528

directed motifs of size three.529

New topological metrics, while popular in studies of other network data,530

have not yet been used for anatomical brain networks. We will also consider531

the PageRank (PR) (Lohmann et al., 2010; Easley and Kleinberg, 2010;532

Shepelyansky and Zhirov, 2010) and the Rentian scale, (Bassett et al., 2010)533

here. In essence, the PageRank (critical in Internet network analysis and534

search engines performance) is a measure of how important a node is, based535

on the importance of its neighbors. Hence, this is a recursive metric that536
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starts with all the nodes having the same measure of importance. More537

formally (Brin and Page, 1998),538

PR(t) =
∑
i

PRi(t)

PRi(t+ 1) = (1− α) + α
∑
j∈Ni

PRj(t)∑
k wjk

, PRi(0) =
1

n
, (13)

where again n is the number of nodes, Ni the neighborhood of node i, α is539

a damping parameter set in the [0, 1] range, and t = 1, 2, . . . the iterations540

until convergence, defined as |PR(t+1)−PR(t)| ≤ ε, for some small number541

ε. The PageRank tries to identify nodes that are influential in the network,542

not only because they have many connections with other nodes, but also543

because those neighboring nodes are influential themselves. This may be a544

better definition of node importance than traditional hubs, which account545

only for the number of connections of a node (node degree).546

The Rentian scale11 is a measure of the wiring modular complexity of the547

network that is self similar (fractal) at different scales. This is a metric of548

modularity that differs from the previous one (Q) in that it is hierarchically549

represented as modules within modules at different network scales. More550

formally (Bassett et al., 2010),551

EC = kN r, (14)

where EC is the number of external connections to a module, k a propor-552

tionality constant, N the number of nodes in the module, and r the Rentian553

11The Rentian scale does not use actual the weights or the direction information.
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exponent. Here, we use the physical Rentian scale, which uses the physical554

coordinates of the brain cortical regions. In order to avoid introducing the555

obvious differences in the brain size due to sex, we use the same physical556

coordinates for all brain cortical regions, corresponding to a single brain.557

The Rentian scale is computed as the mean Rentian exponent on Equation558

(14), by partitioning the network into halves, quarters, and so on in physical559

space, providing EC and N values at different scales. The constant k and560

Rentian scale r are computed by least squares minimization of the linearized561

Equation (14), log(EC) = log(k) + r log(N) for all values of EC and N562

obtained from such partition (Bassett et al., 2010).563

Some node-to-node topological metrics can lead to global metrics. For564

instance, the trace of ΛP̃ is a global measure of node importance called the565

Estrada index. The EBC can also be made global, by averaging it over the566

entire network. Nevertheless, this kind of large averaging might destroy local567

differences at the edge level and will not be considered here.568

3.3. FDR Error Control569

3.3.1. Single Family of Hypothesis Testing570

To control the FDR for the single families of hypothesis corresponding571

to the research lines “are there any global topological differences between572

real brain connectivity networks and random networks;” and “are there any573

mean differences between connectivity matrices due to sex and kinship?,”574

we use here the linear step-up algorithm of Benjamini-Hochberg (Benjamini575

and Hochberg, 1995), hereafter BH-FDR. The BH-FDR algorithm has been576

applied in many recent multiple hypothesis testing studies, including brain577

connectivity analysis (Gong et al., 2009; He et al., 2007; Jahanshad et al.,578
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2010).579

Other approaches to control the FDR in multiple hypothesis testing that580

are less conservative than the BH-FDR algorithm have been proposed in the581

literature (Storey, 2002; Storey et al., 2004; Westfall et al., 1997; Benjamini582

and Hochberg, 2000; Benjamini and Yekuteli, 2001, 2005), but they require583

either independence of the hypotheses being tested or a known correlation584

structure (Reiner-Benaim, 2007). The BH-FDR algorithm is still the most585

widely used, as it is simple and it controls the FDR for normally distributed586

tests with any correlation structure (Benjamini et al., 2009; Reiner-Benaim,587

2007). As we are working with mean differences in a large number of connec-588

tivity matrices, we can assume that the mean follows a normal distribution,589

by the central limit theorem (Fisher, 2011). Hence, the simple BH-FDR er-590

ror control is quite appropriate here. For completeness, we provide here the591

basic BH-FDR algorithm (Benjamini and Hochberg, 1995; Yekutieli, 2008):592

Algorithm 1 BH-FDR

1. Sort in increasing order all the p-values of the null hypothesis: p1 ≤

p2 ≤ ... ≤ pL.

2. Let r = maxi{pi ≤ q/L}, define the threshold pth = pr. If no r could

be found, define pth = q/L (pure Bonferroni).

3. Reject all null hypothesis with pi ≤ pth.

where, L is the number of null hypothesis and q the desired family-wise593

confidence level.594
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3.3.2. Multiple Families of Hypothesis Testing595

As explained before, we have a tree of topological metrics at different lev-596

els of resolution (Figure 1). Hence, we need to test each topological metric597

at the global, node-to-node, and node levels. Nevertheless, testing the topo-598

logical metrics at the node-to-node and node level consist of testing families599

of hypothesis of sizes O(n) and O(n2), respectively, where n corresponds to600

the number of nodes in the network. Hence, we have multiple families of601

hypothesis testing and we need to control the overall FDR on each of the602

proposed research lines.603

The FDR error control has been limited so far to a single family of mul-604

tiple hypothesis testing. The implicit assumption in many large studies has605

been that there is no need to control the FDR when multiple families of606

hypotheses are being performed on the same data set, other than the FDR607

control on each family of hypotheses (Yekutieli, 2008). However, in general,608

the FDR control separately applied to each family of hypothesis does not609

imply FDR control for the entire study (Benjamini and Yekutieli, 2005;610

Yekutieli, 2008). If a separate control of the FDR is performed on each fam-611

ily of hypotheses, then the overall FDR error corresponds to the sum of FDR612

errors of each family, which can quickly make the overall p-value of the study613

too large to be of any use. As we compare different topological metrics at614

different levels, we have different families of multiple hypothesis tests that615

require overall control of the FDR for each research line.616

To control the overall FDR error, we proceed in a hierarchical way, testing617

from lower to higher resolutions, as suggested by (Yekutieli et al., 2006;618

Yekutieli, 2008). This strategy makes sense since it avoids testing first at619
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higher resolutions, where the number of hypotheses to be tested on each620

family could go up to 4900 (n = 70). If the fraction of null rejections is small,621

then the FDR error control becomes as stringent as Bonferroni correction622

(Yekutieli, 2008), which significantly increases the chance of not rejecting623

any false null hypotheses (false negatives or Type II error).624

Figure 1 shows the tree of possible hypotheses while testing the topolog-625

ical differences due to sex and kinship at three levels: global, node (corti-626

cal regions), and node-to-node (shortest paths and communicability). The627

dashed lines on Figure 1 indicate that the higher resolution hypotheses are628

only tested if the parent null hypothesis was rejected, as indicated by (Yeku-629

tieli, 2008).630

An specific example (see Figure 1) is the communicability matrix (COM),631

which contains O(n2) non-zero entries, and hence, O(n2) hypotheses to test.632

We can test instead its eigenvectors (Equation (7)), which requires only O(n)633

hypothesis tests to determine if COM might be significant.634

Let H0 = {H0
i , i = 1, . . . , L0} be the set of hypothesis to be tested at the635

lowest resolution level, and Hk = {Hk
ij, i = 1, . . . , Lk, j ∈ Hk−1} be the set636

of hypothesis at resolution levels k = 1, . . . , K. In our case, K = 2, where637

K = 0 corresponds to the topological metrics at the global level, K = 1 to the638

topological metrics at the node level, and K = 2 to the topological metrics at639

the node-to-node level (again, see Figure 1). Hence, we have a hierarchy of640

hypotheses, where the FDR error is controlled at each level simultaneously on641

all families of hypotheses, using the BH-FDR algorithm (see Section 3.3.1),642

imposing as mentioned above the condition that higher resolution hypotheses643

are tested only if the parent hypothesis has been rejected.644
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If the p-values corresponding to the hypotheses being tested are indepen-645

dently distributed, true null hypotheses p-values have uniform distributions,646

and for false null hypotheses, the conditional marginal distribution of all the647

p-values is uniform, or stochastically smaller than uniform (Yekutieli, 2008).648

In such cases, the overall FDR for the whole tree of hypotheses is bounded to649

FDR ≤ 2δq, where q is the family-wise confidence level and δ ≈ 1.0 for most650

cases, but can be as large as δ ≈ 1.4 for thousands of hypothesis with few651

discoveries. Hence, controlling the FDR on each level at q = 0.05 will bound652

the overall FDR at 0.1 in most cases or at 0.14, when thousands of hypothesis653

are tested and the number of discoveries is relatively small compared to the654

number of hypothesis tested (see Yekutieli 2008).655

Testing for all the required conditions on the p-values and computing656

δ to bound the overall FDR as defined before, is a daunting task that has657

been tackled in the past by modeling and multiple simulations with synthetic658

data (Yekutieli, 2008; Reiner-Benaim et al., 2007). Instead, we can use the659

fact that the bound of the overall FDR is the sum over k = 0, . . . , K of the660

bounds for the FDR at each level, FDR(k) (Yekutieli et al., 2006; Yekutieli,661

2008). Hence, the overall tree FDR ≤ (K + 1)q, where K + 1 is the number662

of levels in the tree. Here K = 2, hence, FDR ≤ 3q = 0.15, for a family-wise663

confidence level of 0.05 at each level, which is quite close to the predicted664

(most conservative) theoretical overall bound with δ = 1.4.665

3.3.3. Screening666

Despite the overall control of the FDR described before, for large studies,667

it is quite possible that the BH-FDR control would become equivalent to a668

simple (too conservative) Bonferroni correction, and no single null hypoth-669
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esis could be rejected (Benjamini and Yekutieli, 2005). Most large studies,670

e.g., the expression levels of thousands of genes in microarrays, nowadays671

use screening methods to reduce the number of hypotheses tested, improving672

the overall statistical power of the FDR control, especially when the fraction673

of rejections of the null hypothesis is small (Benjamini and Yekutieli, 2005).674

Screening to eliminate some uninteresting hypotheses is valid, so long as the675

null hypothesis of the screening method is independent of the null hypothe-676

sis being tested (Yekutieli, 2008). Since the null hypothesis in most tests is677

that mean differences are zero, a valid screening method is an ANOVA sin-678

gle effects F -ratio screening (Reiner-Benaim et al., 2007), in which the null679

hypothesis depends on the variance of the data (see details in Appendix).680

In addition to reducing the number of hypotheses to be tested, it has been681

also proposed to use thresholds on the connectivity matrices themselves to682

get rid of noisy connections, avoiding thus unnecessary tests on those connec-683

tions. To avoid ad-hoc thresholds, we screen the connectivity matrix using684

a set of increasing thresholds that produce different connectivity matrices at685

different sparsity levels (Rubinov and Sporns, 2010; Bullmore and Bassett,686

2010; Achard and Bullmore, 2007; Bassett et al., 2008). This data screening687

technique reveals statistical differences at different levels of sparsity that are688

not seen with a single ad-hoc threshold (Gong et al., 2009). Optionally, a689

single robust threshold can be used on the connectivity matrices themselves,690

using the BH-FDR error control (Abramovich and Benjamini, 1996). Here,691

we screen the normalized connectivity matrices with thresholds in the [0, 0.05]692
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range,12 as in (Gong et al., 2009), given that the BH-FDR based threshold is693

too stringent and may miss important discoveries. Figure S3 illustrates how694

these thresholds affect the sparsity of the thresholded matrices.695

Here, we use then the simple screening method of thresholding the connec-696

tivity matrices at different sparsity levels proposed by (Rubinov and Sporns,697

2010; Bullmore and Bassett, 2010; Achard and Bullmore, 2007; Bassett et al.,698

2008), given its simplicity and independence of the hypothesis being tested.699

Then, we apply an ANOVA single effects F -ratio screening test to eliminate700

remaining uninteresting hypotheses (see Appendix for details). This kind of701

selective inference has not yet received proper theoretical or practical con-702

sideration in the context of screening uninteresting hypotheses and the less703

obvious connection between the screening test and the follow-up one (Reiner-704

Benaim, 2007; Benjamini et al., 2009). Better FDR error control algorithms705

are needed, especially for cases where the number of null hypotheses is large706

and the FDR methods reduce to a simple Bonferroni correction.707

3.3.4. Bootstrapping708

We need to describe how are we going to compute the p-values that the709

BH-FDR error control requires. As we are working with average connec-710

tivity and topological network differences between different groups of indi-711

viduals (including pairs of individuals), then by the central limit theorem,712

those averages should asymptotically follow a Gaussian distribution (Fisher,713

2011). Nevertheless, there could be some small variations from the Gaussian714

distribution on real finite samples, so we use a non-parametric approach.715

12Recall that the normalized connectivity matrices are all in the [0, 1] range.
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Bootstrapping can improve the reliability of inference compared with con-716

ventional asymptotic tests (Davison and MacKinnon, 1999). We use boot-717

strapping with replacement to obtain 20,000 samples of the mean for each718

metric, scale, and class. The p-values (p) required by the BH-FDR error719

control can be easily computed from the bootstrapped distribution of the720

mean differences,721

p =
c

B
min{

B∑
i=1

I(si) s.t. si > 0,
B∑
i=1

I(si) s.t. si < 0)}, (15)

where B is the number of bootstrapped samples, c = 1 for single-tailed tests,722

c = 2 for double-tailed tests, si are the bootstrapped sample differences, and723

I(si) the frequency of those samples. Sample differences are for instance724

differences in the clustering coefficient at a given brain region (node) i, or725

differences in the communicability matrix taken as a column vector at the726

entry i, due to sex. As in (Gong et al., 2009), we consider positive and727

negative differences in the connectivity matrices and topological metrics of728

the associated digraphs for both sex and kinship differences, so we will use729

one-tailed p-values.730

3.3.5. Z-scores Global Topological Metrics731

As the global topological metrics of the brain connectivity networks and732

their corresponding random networks are independent, the Z-score of their733

differences is734

Z =
M −MR√
δ2
M + δ2

MR

, (16)

35



where M indicates the mean of metric M and MR the mean metric for the735

corresponding random network. Here we use a parametric t-test, as there736

are enough samples of the population to assume Gaussianity, and being con-737

sistent with previous results comparing real and random networks (Rubinov738

and Sporns, 2010; Boccaletti et al., 2006).739

4. Results740

We show here the results obtained from the 303 HARDI-derived connec-741

tivity matrices, with a formal statistical analysis of the topological features742

as described before. For space considerations, the detailed lists of features is743

presented in the supplement, with corresponding p-values and mean differ-744

ences.745

The figures in the next sections showing the features selected by the746

machine learning methods described in Section 3.1 are color coded according747

to the score provided by the feature selection algorithm. This score accounts748

for the effects of each feature on the classification accuracy and its stability749

across the n-fold cross-validation runs (see more details on the tools employed750

in the Appendix). We do not indicate here which are the top ranked features,751

since all the features selected are important for classification purposes, even752

if they ranked the lowest. For instance, if we only take the 10 top ranked753

features and use them for classification, the performance would be relatively754

poor.755

Figures in the next sections showing the statistically significant features756

found in hypothesis testing (Section 3.3) are color coded according to their757

Z-score and the sign of the difference, magenta for positive and cyan for758
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negative. As the sign of the difference depends on the order of the operands,759

we specify in the corresponding text and on each figure what is the meaning760

of each color.13
761

4.1. Classification762

Tables S2-S4 compare the classification results for the three node-to-node763

level metrics considered here, the “raw” connectivity matrices, generalized764

communicability matrix (P ), and edge betweenness (EBC), using the three765

normalizations indicated in Section 2. The performance of sex classifica-766

tion for the connectivity matrices, generalized communicability, and edge767

betweenness, using Equation (3), are 93%, 92.2%, and 92.5%, respectively.768

The corresponding performances for Equation (1) are 88.1%, 88.1%, and769

93.7%, respectively, and for Equation (2) are 89.9%, 88.3%, and 80.7%, re-770

spectively. The performance of kinship classification for the connectivity ma-771

trices, generalized communicability, and edge betweenness, using Equation772

(3), are 88.5%, 88.5%, and 87.3%, respectively. The corresponding perfor-773

mances for Equation (1) are 89.7%, 85.8%, and 75.2%, respectively, and for774

Equation (2) are 87.4%, 83.6%, and 75.5%, respectively.775

Notice, that in some cases, Equation (1) produces slightly better classi-776

fication results than Equation (3), however, as indicated in the Appendix,777

only Equations (2)-(3) reduce significantly the confounding effects of brain778

13Recall that for the kinship classes, we will be comparing connectivity matrices that

represent the absolute connectivity differences within each group, and not the connectivity

of each individual or pairs of individuals. Hence, differences between two kinship classes

refer here to differences between the two means of the within-group differences.
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size. In addition, Equation(3) produces the best overall classification results,779

considering all the classes and topological metrics.780

Classification performance was just slightly better than chance for all781

topological metrics at the node level (Figure 1), and hence, they were not782

compared here using Equations (1)-(3). Next sections show in more detail783

the classification results using Equation (3).784

4.1.1. Connectivity Matrices785

We start with the classification results when the “raw” connectivity ma-786

trices are used, one per individual and one per pairs of individuals. Table 1787

and Table S5 (for the confusion matrix, provided in the supplementary mate-788

rial) compare sex classification performance using all features (probabilities789

of connection between the n = 70 cortical regions) of the connectivity ma-790

trix against feature selection. Feature selection greatly improves classification791

performance - the selected features provide more information to distinguish792

between sexes. Overall, classification accuracy improved from 49.5% using up793

to 2763 features of the connectivity matrices, to 93% after feature selection794

that reduced the number of features to 297. According to our permutation795

tests, the probability of achieving this classification performance by chance796

is 0.001 or lower. Figure 2a. shows the features that provide the best clas-797

sification results for sex, in the raw connectivity matrix. Table S7 in the798

supplement lists the selected features in more detail.799

The feature selection algorithm selected 70 inter-hemispheric features as800

influential for sex classification purposes and about the same number of fea-801

tures on the left (113) and right (114) hemispheres (Figure 2a.).802

Table 2 and Table S6 (for the confusion matrix, in the supplementary803
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material) compare kinship classification performance using all features of the804

connectivity matrix versus feature selection. Here, the overall classification805

accuracy improved from 63.5% using up to 2763 features of the connectivity806

matrix to 88.5% using the 250 features, automatically selected by feature807

selection. Permutation tests indicate that the probability of arriving to this808

classification performance by chance is equal or below to 0.001. Figure 2b.809

shows the features that provide the best classification results for kinship, in810

the connectivity matrix. Table S8 in the supplementary material list the811

corresponding selected features in more detail.812

The feature selection algorithm selected 59 inter-hemispheric features as813

influential for kinship classification purposes and about the same number of814

features selected on the left (97) and right (94) hemispheres (Figure 2b.).815

4.1.2. Topological Metrics816

The best results at the node level correspond to the clustering coefficient817

and for sex classification, as indicated in Table 3. Overall classification ac-818

curacy improved from 55.4% using the clustering coefficient on all 70 nodes819

to 62.7% using the 53 (not a significant reduction) nodes selected using au-820

tomatic feature selection.821

On the other hand, good classification results were obtained for sex and822

kinship using the node-to-node topological metrics: edge betweenness cen-823

trality (EBC) and the generalized communicability matrix (P ), respectively.824

The results from the generalized communicability matrix are slightly better825

than those using EBC for sex, while those from EBC are slightly better for826

kinship. Hence, we present here the best classification performances.827

Tables 4 and Table S9 in the supplement (confusion matrices) show the828
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sex classification performance using the generalized communicability matrix.829

For comparison purposes, we also compute the classification performance us-830

ing FDR (Abramovich and Benjamini, 1996) to select the most statistically831

significant elements of the generalized communicability matrix at the q=0.05832

level. Sex classification accuracy improved from 51.8% using all 4900 fea-833

tures of the generalized communicability matrix to 92.2%14 using the 301834

features automatically selected by feature selection. The overall accuracy of835

sex classification degraded to 46.2% using the 935 features selected by FDR836

thresholding.837

Tables 5 and Table S10 in the supplement show the kinship classification838

performance using edge betweenness centrality, where as before, we included839

the classification performance using FDR for feature selection. The overall840

kinship classification accuracy improved from 57.1% using 2388 features of841

P to 87.3% using the 251 features selected by feature selection. The overall842

accuracy of kinship classification degraded to 32.1% using the 1031 features843

selected by FDR thresholding.844

Figure 3.a shows the 301 features (entries) of the generalized communi-845

cability matrix that provide the best classification results for sex (listed in846

more detail on Table S11), while Figure 3.b shows the 251 features (edges) of847

the EBC metric that provide the best classification results for kinship (listed848

in more detail on Table S12). The 301 best entries of the communicability849

matrix for sex classification represent weighted walks of different lengths (or850

14Notice in tables S3-S4 that EBC has a slightly higher classification than communica-

bility, but it has a higher BER error, hence we choose here the generalized communicability

matrix.
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subgraphs, see Section 3.2.1) centered on the connections indicated on Figure851

3a.852

The total number of automatically selected entries of the communicability853

matrix were distributed as 99 centered on inter-hemispheric connections, 116854

centered on the left hemisphere, and 86 on the right hemisphere. On the other855

hand, the 251 entries of the EBC for zygosity classification represent (see856

Section 3.2.1) the importance of each connection in the connectivity matrix857

in terms of shortest paths using such connections. In particular, the selected858

entries of the EBC were distributed as (Figure 3b) 51 inter-hemispheric, 94859

in the left hemisphere, and 107 in the right hemisphere.860

Even though classification with cross-validation does not require Bonfer-861

roni correction, the p-values of the permutation tests do require correction,862

as each permutation test corresponds to testing the null hypothesis that the863

reported classification performance was obtained by chance (Ojala and Gar-864

riga, 2010). In these two lines of research (sex and kinship), we performed865

permutation tests for the 11 proposed topological metrics (not all shown here)866

indicated on Figure 1 at the node and node-to-node levels, plus the permuta-867

tion tests performed to compare equations (1)-(3) and those to compare the868

generalized communicability matrix with the communicability matrix (also869

not shown for space reduction). Hence, we did in total 13 permutation tests870

for sex and 13 for kinship. The BH-FDR correction keeps the overall false871

discovery rate for the permutation tests to 0.001, since all tests rejected the872

null hypothesis at this confidence level.873
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4.2. Hypothesis Testing874

4.2.1. Connectivity Matrices875

We now present the results of hypothesis testing on differences in the876

connectivity matrix due to sex and kinship. Prior work on connectivity ma-877

trices for differentiating sex and kinship classes have focused on just a few878

connections (10) (Jahanshad et al., 2011). Previous work also did not con-879

sider all possible pair-wise comparisons between identical twins, non-identical880

multiples, non-twin siblings, and unrelated subjects.881

Sex Differences. Figure 4 shows the 36 statistically significant sex differences882

found in the connectivity matrices after BH-FDR error control, requiring a883

Z-score 1.75 or higher (p-value of 0.0405 or lower, for a single tailed normal884

distribution). The color map indicates where the probability of connection885

is higher for women (magenta) than for men (cyan). As seen in this figure,886

on average, women have higher brain connectivity than men in both hemi-887

spheres, on the directed connection pairs shown. Figure 4 also shows that888

women have higher inter-hemispheric connectivity than men, in agreement889

with (Jahanshad et al., 2011). Nevertheless, men have some higher probabil-890

ities of connection than women, mainly on the right hemisphere (Figure 4).891

Table S13 in the supplement shows in more detail each pair of connection892

statistics (36) with their means and p-values. The first five largest rela-893

tive differences with the lowest p-values were in the following connections:894

Pars Opercularis - Post Central and Frontal Pole - Caudal Anterior Cingu-895

late, in the left hemisphere, Inferior Parietal - Corpus Callosum, in the right896

hemisphere, and the inter-hemispheric connections Cuneus (right) - Lateral897

Occipital (left) and Inferior Parietal (left) - Corpus Callosum (right).898
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Kinship Differences. Figure 5 shows the statistically significant differences899

between a) identical twins and non-identical multiples, b) identical twins900

and non-twin siblings, c) identical twins and unrelated pairs of individuals,901

d) non-identical multiples and non-twin siblings, e) non-identical multiples902

and unrelated pairs of individuals, and f) non-twin siblings and unrelated903

pairs of individuals; covering thus all possible pair-wise comparisons between904

these four groups. The reported differences have a Z-score of 2.67 or higher as905

required by the FDR error control overall possible pair-wise comparisons. As906

may be expected for a genetically influenced trait (Thompson et al., 2001),907

greater differences are found between unrelated pairs of individuals and sib-908

lings than between non-twin siblings and twins. Also, greater differences909

are found between siblings and twins than between identical twins and non-910

identical multiples. The color map indicates where the differences are higher911

for the first group (magenta) or for the second (cyan).912

Of special interest are the connections that show the highest Z-score differ-913

ences between identical twins and non-identical twins (Figure 5): Lateral Or-914

bitofrontal - Middle Temporal, Rostral middle frontal - Supra-marginal, and915

Supra-marginal - Rostral middle frontal, in the left hemisphere, and the inter-916

hemispheric connection Corpus callosum (left) - Medial Orbitofrontal (right).917

Most of the differentiating connections between identical twins and non-918

identical twins are either in the left hemisphere or in the inter-hemispheric919

connections. A similar behavior can be observed on the differences between920

identical twins and non-twin siblings.921
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4.2.2. Topological Metrics922

We now concentrate on the topological metrics and study their strength in923

distinguishing between the different groups and between real brain networks924

and random ones.925

Random Networks. We first report differences between real brain connectiv-926

ity networks and random networks, obtained by rewiring, at random, the927

original brain connectivity networks while preserving the in and out node928

degrees (recall that following the normalization, the obtained networks are929

directed). Table 6 shows the mean and standard deviation (within paren-930

thesis) of the topological metrics tested, and the Z-score for the difference931

between the real networks and the corresponding random networks for each932

topological metric.933

The exponent γ of the scale-free, node degree truncated power law distri-934

bution, (Bullmore and Bassett, 2010; Boccaletti et al., 2006), is also shown.935

From the 13 possible directed motifs of size three mentioned before (Fig-936

ure S2), only motifs 9 and 13 are present in the brain connectivity matrices937

analyzed here, and therefore only the intensity (Section 3.2.2) of these two938

motifs are compared in the table.939

The FDR multiple hypothesis testing error control rejects all null hypoth-940

esis with a Z-score equal or above 2.12, at a family-wise error control level of941

0.05. Hence, the global clustering coefficient, modularity, and motifs 9 and942

13, can be used to differentiate real brain connectivity networks from their943

corresponding random network.944

As the nodes’ degree in the brain connectivity networks follows a trun-945

cated power law, we can say that these networks are scale-free.946
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Since the characteristic path of these networks is as efficient as that of the947

corresponding random networks, while the clustering coefficient and modu-948

larity are higher, we can infer that brain networks satisfy the small-world949

property, i.e., they combine high modularity with a robust number of inter-950

modular short paths (Rubinov and Sporns, 2010; Boccaletti et al., 2006).951

We have then demonstrated small-worldness of anatomical brain connec-952

tivity networks using a relatively large number of samples, and found that,953

according to other topological metrics, the networks are non-random.954

Sex Differences. Following the hierarchical scheme of Section 3.3.2 (see also955

Figure 1), we threshold the connectivity matrices at different screening val-956

ues and compute the one-tailed p-values obtained from the bootstrapped957

distributions of the mean (Equation (15)), for each one of the 9 topological958

metrics considered. Figure S4 details these results in terms of the Z-score for959

each topological metric, when the connectivity matrices are thresholded in960

the [0, 0.05] range, as well as the BH-FDR threshold. The BH-FDR method961

requires a minimum Z-score of 2.5, from which we conclude that only the962

clustering coefficient satisfies the FDR error control at the node level. In963

addition, the eigenvalues of the communicability matrix may be tested for964

statistical significance at this level (Figure 1), to check if the communicability965

matrix should be tested at the node-to-node level.966

Figure 6a shows the Z-score for the differences in the clustering coeffi-967

cient, due to sex, on each node; while Figure 6b shows the Z-score for the968

eigenvalue differences of the communicability matrix, also due to sex. Higher969

clustering coefficients for women are shown in magenta, while higher cluster-970

ing coefficients in men are indicated in cyan. Figures 6a and 6b also indicate,971
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in black dashed lines, the minimum Z-score (2.13) required by the BH-FDR972

error control on both families of tests, at q=0.05. Table S14 in the supple-973

ment details the sex differences in the clustering coefficient. In this figure,974

most differences are in the left hemisphere, which agrees with previous re-975

sults indicating women have a higher brain connectivity than men in the left976

hemisphere (Jahanshad et al., 2011; Gong et al., 2009). Here, we obtained977

similar results with a relatively larger number of HARDI images and using978

all the brain regions indicated in Table S1.979

We found that the following cortical regions in the left hemisphere have980

a larger clustering coefficient in women than in men: Caudal Anterior Cin-981

gulate, Pars Orbitalis, Rostral Anterior Cingulate, Rostral Middle Frontal.982

In the right hemisphere, we found that the Cuneus and Middle Temporal983

cortical regions have also a larger clustering coefficient in women than in984

men.985

Figure 6b indicates that in the spectral decomposition of the communi-986

cability matrix (Section 3.2.1), one eigenvalue was found to be statistically987

significant for the differences between women (magenta) and men (cyan), so988

there are sex differences in the communicability matrix at the node-to-node989

level.990

Figures 7a and 7b show the Z-score for the statistically significant sex991

differences in the edge betweenness centrality (EBC) and the communica-992

bility matrix, respectively, due to sex. For simplicity, the figures only show993

the Z-scores for the sex differences exceeding the minimum Z-score (3.29)994

required by the BH-FDR error control over both families of hypothesis tests995

at the 0.05 level. In both figures, higher EBC or communicability values996
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for women are indicated in magenta, while higher EBC or communicability997

values for men are indicated in cyan.998

As seen in Figure 7a, only five entries in the EBC matrix are statistically999

significant at this confidence level, and are indicated in more detail in Table1000

S15 (supplementary material). In particular, the EBC metric is higher in1001

women than in men for the following connections in the left hemisphere: Non-1002

cortical - Lingual and Lingual - Parahippocampal. In the right hemisphere,1003

we found that the EBC metric is higher in women than in men for the1004

Precuneus - Corpus Callosum connection. Finally, the EBC metric on the1005

inter-hemispheric connection Supra-marginal (left) - Peri-calcarine (right) is1006

also higher in women than in men. The p-values are around 10−4, indicating1007

a very high confidence level.1008

Figure 7b shows that 12 differences in the directed communicability ma-1009

trix are statistically significant. These differences are explained in more detail1010

in Table S16 (supplementary material). In general, women have higher di-1011

rected communicability values, in the inter-hemispheric region, than men.1012

These communicability values are very small (3 × 10−8 to 7 × 10−4); this is1013

because only long walks are present between the indicated nodes, and the1014

contribution of those walks to the communicability matrix are significantly1015

reduced by the factorial of the walk length on Equation (15). For subsequent1016

studies that focus on the communicability matrix, we recommend zooming1017

in on longer walks, as suggested in (Estrada, 2010).1018

Most of the statistically significant differences found between women and1019

men in the communicability matrix are in the inter-hemispheric region and1020

the p-values of these differences are of the order of 10−4. In particular, the1021

47



highest differences found were Middle Temporal (left) - Medial Orbitofrontal1022

(right), Frontal pole (right) - Parahippocampal (left), Superior Temporal1023

(left) - Medial Orbitofrontal (right), Transverse temporal (right) - Parahip-1024

pocampal (left), and Lingual (right) - Parahippocampal (left).1025

Finally, the overall FDR for this line of research is FDR ≤ 3q = 0.15 (see1026

Section 3.2).1027

Kinship Differences. As in the previous section, we thresholded the con-1028

nectivity matrices at different screening values and compute the one-tailed1029

p-values obtained from the bootstrapped distributions of the mean (Equa-1030

tion (15)), for each one of the 9 topological metrics considered and for all1031

pair-wise comparisons of kinship groups. The BH-FDR method requires a1032

minimum Z-score in the 2.8-3.0 range, depending on the threshold used (Fig-1033

ure S5 shows these results in greater detail). None of the global topological1034

metrics was statistically significant, when controlling the false discoveries at1035

the 0.05 or even at the 0.1 level. This is likely because there are 9× 6 = 541036

hypothesis tests for all possible pair-wise comparisons of kinship. ANOVA1037

single factor F -ratio reduces this number to 34 on average, but still there1038

are too many comparisons and most global metrics have very low Z-scores1039

(high p-values). One possibility for future analysis would be to consider each1040

case independently, providing different metrics for each pair-wise compari-1041

son. However, we decided to follow the hierarchical screening process (see1042

Figure 1), and test only the communicability matrix eigenvalues at the node1043

level.1044

Figure 8 shows the communicability eigenvalues for all possible pair-wise1045

comparisons. The communicability eigenvalues do not provide differentiation1046
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between identical twins and unrelated pairs of individuals at the minimum1047

Z-score (2.12) required by the BH-FDR error control. This indicates that1048

the communicability matrix might not be able to distinguish kinship rela-1049

tionships at the node-to-node level. The fact that the eigenvalues of the1050

communicability matrix could not distinguish all kinship pair-wise compar-1051

isons does not necessarily imply that we cannot find differences using the1052

communicability matrix. However, as explained in Section 3.3.2, we follow1053

a conservative approach, and do not test the communicability matrix at the1054

highest resolution. A complementary study focusing just on the communica-1055

bility matrix could test it directly to see if it provides statistically significant1056

differences in kinship.1057

Figure 9 shows the statistically significant edge betweenness centrality1058

(EBC) differences for all pair-wise kinship comparisons. The EBC matrix1059

does provide significant differences for kinship identification at the required1060

BH-FDR error control (Z-score above 2.87). In particular, the connections1061

that show the highest Z-score differences between identical twins and non-1062

identical twins were (Figure 9): Superior Frontal (right) - Caudal Anterior1063

Cingulate (left), Middle temporal (right) - Parahippocampal (right), Pre-1064

cuneus (left) - Precuneus (right), Corpus Callosum (right) - Rostral Middle1065

Frontal (right), and Parahippocampal (left) - Middle temporal (left).1066

The overall FDR for this line of research is FDR ≤ 3q = 0.15 (see Section1067

3.2).1068
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5. Discussion1069

5.1. Normalization1070

On section 2.2, we chose a normalization (Equation (3)) that aims to1071

reduce cortical volume differences (caused by brain size differences for in-1072

stance). It would be very interesting to study how this normalization affects1073

the results if there are global differences in brain size between groups. In a1074

degenerative disease such as Alzheimers disease, for example, there is interest1075

in whether network measures of brain connectivity are altered by the disease.1076

If they are, it is incumbent on those analyzing the data to find out of the1077

network differences are reducible to a simpler effect, such as the absolute1078

or relative size of a cortical region becoming smaller. In Alzheimers disease1079

and mild cognitive impairment, for example, we know there is disproportion-1080

ate atrophy in the temporal, entorhinal, and cingulate cortices (Thompson1081

et al., 2003; Apostolova and Thompson, 2008), and so any changes in the1082

counts and density of fibers innervating those areas should be tested to see1083

if the changes are due to volume differences in the cortical projection areas.1084

If the proportion of fibers connecting a given cortical region to the other1085

cortical regions remains the same in an atrophic brain relative to a healthy1086

brain, then the network properties of connectivity would not differ after such1087

a normalization. However, if we do normalize the connectivity matrices for1088

the sizes in the cortical regions, it would be possible to infer if the disease1089

affects connectivity above and beyond what would be expected from the size1090

of the cortical regions alone. Alzheimers disease is thought to preferentially1091

impair temporal and limbic connectivity, at least early in the disease, and it1092

is interesting to know if the level of cortical disconnection goes beyond what1093

50



would be seen in a normal person with smaller cortical subregions in these1094

areas. Normalization of network measures to cortical ROI size can achieve1095

this. Most neurodegenerative diseases are expected to influence some con-1096

nections more than others, generating a change in the proportion of fibers1097

dedicated to each connection, when compared to the same cortical region and1098

corresponding connections on a healthy brain. The overall network analysis1099

framework here developed is currently under investigation for such studies,1100

such as neurodenegeration in HIV where basal ganglia, motor and frontal1101

circuits tend to be more greatly impaired than others (Thompson et al.,1102

2005).1103

5.2. Classification using Machine Learning Methods1104

Best overall classification performance was obtained using the normaliza-1105

tion indicated by Equation (3) (sections 2 and 4.1). With this normaliza-1106

tion, we classified brain connectivity networks, according to sex and kinship1107

classes, with high accuracy, based on the raw connectivity matrices and their1108

associated topological metrics, mainly at the node-to-node level. In particu-1109

lar, the edge betweenness and the generalized communicability matrix were1110

powerful for this task. These results should extend well to unobserved data,1111

as evaluated by the formal 10-fold cross-validation and permutation tests.1112

On the other hand, sex and kinship classification results were weak using1113

topological metrics at the node level. This makes sense due to the large1114

variability of the connectivity matrices that live in a very high dimensional1115

space (Rn2
, n = 70), requiring a higher number of features at the node-to-1116

node resolution.1117

We cannot numerically compare our sex and kinship machine learning1118
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based classification results with previous work, since to the best of our knowl-1119

edge, no previous work has performed such studies, starting from the raw1120

connectivity matrices or associated topological metrics.15
1121

A key advantage in achieving the classification results reported here was1122

provided by the embedded SVM-based automatic feature selection algorithm1123

(Section 3.1). This feature selection algorithm evaluates subgroups of fea-1124

tures, eliminating redundancies and identifying features, that when consid-1125

ered individually might not be very influential, but can be so as a group.1126

The number of features selected by this feature selection method is close to1127

(but lower than) the number of samples. This hints that each connectivity1128

matrix provides distinctive features, unobtainable from the remaining ones.1129

Therefore, it will be interesting to investigate, as we increase the number of1130

samples, where the number of features increases to a point where it saturates.1131

Of interest, also, would be to compare ranking versus wrappers feature1132

selection methods; in combination with different classifiers such as logistic,1133

Bayesian, neural networks. A larger study should be conducted to test these1134

classifiers on different datasets and with different tractography algorithms1135

(see Section 5.4 for a discussion).1136

5.3. Hypothesis Testing1137

5.3.1. Sex Differences1138

We found significant statistical differences, due to sex, in the mean val-1139

ues of 36 edges in the connectivity matrices. In line with prior work, we1140

15Of course, other studies focusing on sex and inheritance differences have been con-

ducted in the past, as mentioned in the text and cited in the bibliography.
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found that there are, on average, structural brain connectivity differences1141

between women and men. In particular, women have higher probability of1142

inter-hemispheric connections than men, as well as higher probabilities of1143

connections on both hemispheres (as defined on Section 2), with some ex-1144

ceptions of course (Figure 4). This seems to suggest that on average, women1145

have great structural connectivity supporting inter-hemispheric communica-1146

tion than men. The higher strength of the connections in both hemispheres1147

seems to suggest that the communication between the cortical regions as-1148

sociated with those connections is slightly better supported structurally in1149

women than in men.1150

We must point out here however that these differences are on average.1151

Given the large variability of brain connectivity networks, we can always1152

find individual men with higher connectivity values than some women, e.g.,1153

for the features indicated in Figure 4 (and Table S10).1154

We also found here that the topological metrics mean clustering coeffi-1155

cient, communicability matrix, and edge betweenness centrality, allow us to1156

distinguish between men and women. In particular, the mean clustering co-1157

efficient is higher in women than in men, especially in the left hemisphere1158

and in the cortical regions indicated in Section 4.2.2. On average, the neigh-1159

borhood of these cortical regions is more strongly connected for women than1160

for men. We also find that women have a statistically significant higher edge1161

betweenness centrality metric in five connections (Section 4.2.2). This means1162

that these connections are more frequently used on shortest path communi-1163

cations in women than in men. Finally, we found that women have also1164

statistically significant higher communicability values centered on the inter-1165
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hemispheric connections indicated in Section 4.2.2. This suggest that the1166

inter-hemispheric communication is stronger in women than in men, sup-1167

porting the results from the connectivity matrices, but now at a higher scale1168

that includes walks of any length.1169

Previous results on structural differences in the brain connectivity ma-1170

trix (Jahanshad et al., 2011) and some topological metrics (different from the1171

ones used here), on the associated graph (Gong et al., 2009), agree with the1172

results of this work. In particular, these studies indicate that women have1173

stronger inter-hemispheric connections than men (Jahanshad et al., 2011),1174

that women show greater overall cortical connectivity, and that the underly-1175

ing organization of their cortical networks is more efficient, both locally and1176

globally (Gong et al., 2009), all in agreement with our results. We arrived1177

here at the same overall conclusions using a larger number of high quality1178

HARDI images, a larger number of topological metrics, and formal control1179

of the overall FDR.1180

5.3.2. Kinship Differences1181

We found significant statistical differences in the mean distribution of1182

the pair-wise absolute differences in the connectivity matrices and associated1183

topological metrics, allowing us to distinguish among the kinship classes of1184

identical twins, non identical twins, non-twin siblings, and unrelated pairs of1185

individuals. As expected from a genetically influenced trait, these differences1186

increases as the pair of subjects are less and less related. For instance, the1187

structural differences between identical twins and non-identical twins are1188

less than the structural differences between twins and non-twin siblings. We1189

cannot make the same kind of comparisons we did between females and males,1190
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since the differences reported correspond to differences among classes, where1191

each class is constituted by within-class pair-wise differences. The differences1192

reported here were made explicitly for classification purposes, using machine1193

learning methods and hypothesis testing.1194

Previous and complementary studies on structural brain connectivity dif-1195

ferences due to inheritance (Jahanshad et al., 2010; Thompson et al., 2001)1196

cannot be directly compared with our results, since those studies do not work1197

directly with the raw connectivity matrices.1198

Overall the sex and kinship classification performances (with automatic1199

feature selection) are very good using the communicability and edge be-1200

tweenness topological metrics, but slightly inferior to using the connectivity1201

matrices directly. We believe that the reason for this is that topological1202

metrics are at a higher scale and offer less detail than edges.1203

5.4. Dependence on the Tractography Algorithm1204

A key issue in the repeatability of the findings of any study on struc-1205

tural brain differences based on the DWI-derived connectivity matrix, is the1206

(possible) strong dependence on the tractography algorithm, and the pa-1207

rameters used for such algorithm. Indeed, this study, as well as previous1208

studies on structural brain connectivity, assume that the number of path-1209

ways connecting any pair of cortical regions have been correctly identified by1210

tractography. Nevertheless, tractography results can vary significantly de-1211

pending on the algorithm and its parameters, the signal to noise ratio of the1212

data, and registration (see for instance Hagmann et al. 2006; Shimony et al.1213

2006). In particular, simple tensor-based tractography algorithms produce1214

quite different results from ODF-based models (Hagmann et al., 2006), and1215
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even the most sophisticated tractography algorithms can produce different1216

results when different parameters are employed.1217

Taking into account this caveat, we used a state-of-the-art probabilistic1218

HARDI tractography algorithm (Section 2), performing an exhaustive search1219

of all the possible anatomical connections, avoiding thus local minima, and1220

hence being robust to the variability with respect to different parameters.1221

The results presented here, as well as previous similar studies, are subject to1222

the (unknown) accuracy of the tractography algorithm, and thus statistical1223

results may vary.1224

In order to further increase the confidence on our results, in addition1225

to the ODF-based probabilistic tractography algorithm used here, we tested1226

a simpler, less robust but very popular tensor-based tractography algorithm1227

implemented in the Trackvis toolbox.16 We do not report in detail the results1228

from this tractography, since in general probabilistic tractography algorithms1229

are superior (Hagmann et al., 2006), and in particular the one used here1230

(Aganj et al., 2011). Nevertheless, we now briefly discuss how the results1231

using this tensor-based tractography model compare with the detailed results1232

reported in Section 4. Selected snapshots of the results with this tractography1233

are presented in the supplementary material, figures S6-S8.1234

Overall, the classification accuracies are similar using both tractography1235

models. In addition, the overall sex differences are qualitatively the same:1236

higher inter-hemispheric and overall within hemisphere connections in fe-1237

males than in males. We also obtained statistically significant features to1238

16http://trackvis.org/
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discriminate all the kinship classes using the same topological metrics indi-1239

cated before. However, the particular features identified as significant for1240

classification, and using hypothesis testing, are different for both tractogra-1241

phy algorithms. This is clearly not a failure of the methodology proposed1242

here, but a limitation of the current state-of-the-art tractography algorithms.1243

Moreover, the lower robustness of the tensor-based tractography algorithms1244

is expected to lead to such difference in selected features, since for exam-1245

ple, certain less-complex pathways can be more consistent and less affected1246

by such lower tractography performance. Features selected by ODF-based1247

probabilistic tractography are expected to be more reliable.1248

While the methodology here proposed is expected to be robust to small1249

variations in the connectivity matrices, it can certainly be affected by ar-1250

tifacts coming from tractography or other sources that could seriously bias1251

the connectivity matrices. The robustness of the proposed method relies in1252

turn on the robustness of the feature selection, classification, performance1253

evaluation, and FDR error control methods, that as shown in the Methods,1254

have strong theoretical and practical foundations.1255

5.5. FDR Error Control1256

There is a general consensus in the scientific community that the FDR1257

must be controlled when multiple hypotheses are being tested on the same1258

data. There is however no general agreement on how to control the FDR when1259

multiple families of hypotheses are tested along the same line of research.1260

As shown in Section 4.2, a strict FDR error control on multiple families of1261

hypotheses can significantly reduce the number of null-hypotheses that are1262

rejected, hence, the making of more discoveries.1263
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This is an issue that has been seriously addressed recently, especially in1264

gene expression studies, where multiple families of thousands of hypotheses1265

must be tested on each gene (Yekutieli, 2008). We combined the screening1266

method proposed by Rubinov and Sporns 2010; Bullmore and Bassett 2010;1267

Achard and Bullmore 2007; Bassett et al. 2008, and the ANOVA F-ratio test,1268

to reduce the number of uninteresting null-hypotheses, with the novel hier-1269

archical approach of Yekutieli 2008; Benjamini and Yekutieli 2005; Yekutieli1270

et al. 2006, to control the FDR, increasing thus the statistical power when1271

compared to a naive overall FDR error control. In spite of this, we can not1272

reject any null-hypothesis on the kinship classes, at the topological global1273

level, and only one of the hypotheses tested at this level was significant for1274

sex differences. We could have dropped the control of the overall FDR error1275

considering that is was too strict, but did not, because that undermines the1276

essence of the FDR error control. Indeed, the same reason why we must con-1277

trol the false discovery rate on single families of hypotheses testing, subsists1278

on multiple families of hypotheses testing (on the same research line): the1279

higher the number of hypotheses being tested on the same data, the higher1280

the probability of rejecting null-hypotheses by chance, especially, when most1281

of the null-hypotheses are true or can barely be rejected either individually1282

or at the family level.1283

There is however a need for less conservative FDR error control, especially1284

when the expected proportion of true null-hypotheses is high, i.e., we expect1285

few true discoveries among many true null-hypotheses. The high number of1286

individuals considered here improve the accuracy of the estimated distribu-1287

tion of the mean (via bootstrapping). However, the FDR error control is1288
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blind to this, since the number of hypotheses being tested depends only on1289

the number of features at each scale (see Methods), which, in our case, can1290

be O(n2), n being the number of nodes in the network. The FDR error con-1291

trol penalizes all the same smaller and larger studies. Further studies should1292

be conducted to make the FDR error control less conservative, especially, on1293

larger population studies.1294

6. Conclusion1295

In this large scale HARDI study of 303 individuals, we introduced a unify-1296

ing, robust and general method to investigate brain connectivity differences1297

among individuals (including pairs of individuals) using machine learning1298

and hypothesis testing methods. We also reported differences among groups1299

or classes of individuals using multiple hypotheses tests at several levels of1300

data hierarchy.1301

We considered both: raw connectivity matrices and derived topological1302

metrics, at multiple levels: global, single node, and node-to-node. Feature1303

selection using a wrapper (or embedded method) was critical to eliminate, for1304

classification purposes, uninformative connections in the connectivity matrix1305

or topological metrics on the associated digraphs.1306

Future work will focus on metrics at different scales and at the highest1307

resolution scale (as was done with the connectivity matrices). The study will1308

also be extended to larger datasets, permitting other kinds of genetic studies,1309

and to denser connectivity matrices derived from various tractography meth-1310

ods. Of great interest is a formal study of the sensitivity of classification,1311

feature selection, and multiple hypotheses testing to the tractography model.1312
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Appendix1546

Additional Implementation Details1547

We used the publicly available implementations of topological metrics in1548

the Brain Connectivity Toolbox (BCT),17 that works with weighted directed1549

graphs. Newer metrics such as the PageRank and centrality and communi-1550

cability measures, based on subgraphs, are not available in the BCT toolbox.1551

Nevertheless, a free implementation of the PageRank can be found on the1552

17https://sites.google.com/a/brain-connectivity-toolbox.net/bct/Home
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web,18 and Ernesto’s centrality and communicability measures can be easily1553

obtained using the new matrix exponential function (expm) in Matlab.19
1554

In this work, we use the Waikato Environment for Knowledge Analysis1555

(weka) data mining software,20 which provides feature selection, classifica-1556

tion, regression and n-fold cross-validation tools.21 Permutation tests were1557

implemented in JAVA using the weka, libsvm,22 and Java Statistical Classes23
1558

(jsc) libraries. The permutation tests consist on training the classifier with1559

the selected features and 10-fold cross-validation, over 1,000 random per-1560

mutations of the data set labels, in order to generate the null-hypothesis1561

distribution. Since, the computed p-values of the permutation tests strongly1562

depends on the performance of the classification being tested (Ojala and1563

Garriga, 2010), we used the average of the classification performance over1564

1,000 different random splittings of the data set.24 In addition, the clas-1565

sification performance is not evaluated using a single parameter. We used1566

here overall classification accuracy, Balanced Error Rate (BER)25 area under1567

the Receiver Operating Characteristic (ROC), kappa statistic, and confusion1568

matrices.1569

18http://read.pudn.com/downloads149/sourcecode/math/642925/pagerank.m .htm or

http://www.levmuchnik.net/Content/Networks/NetworkPackageReference.html#Algorithms
19http://www.mathworks.com/help/techdoc/ref/expm.html
20http://www.cs.waikato.ac.nz/ml/weka/
21Alternatively, the rapidMiner package provides multithreading and more flexibility

than weka, at the expense of a steeper learning curve.
22http://www.csie.ntu.edu.tw/ cjlin/libsvm/
23http://www.jsc.nildram.co.uk/
24This is achieved in weka by changing at random the seed.
25Chosen in the NIPS 2003 feature selection challenge as the main judging criterion.
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In general, classifier performance can be biased due to large differences1570

in the number of samples for each class. The weka toolbox allows the use1571

of a weight to compensate for the differences in the number of samples.1572

Nevertheless, this weight did not produce significant classification differences1573

as compared to the unweighted samples, as SVMs are less dependent on1574

sample size, because they rely on a few support vectors.1575

Single Effects F -ratio1576

Here, we will refer to populations, factors and treatments as it is usual in1577

experimental design. The population here refers to the bootstrapped mean1578

differences, due to sex for instance. Factors refer here to sex differences1579

measured by each one of the topological metrics considered (Section 3.2,1580

Figure 1), while treatments refer to the differences on each node or node to1581

node that produce differences in the mean value of the topological metric at1582

those scales. For instance, a factor is the clustering difference (measured by1583

the clustering coefficient) due to sex, while the treatments correspond to the1584

clustering differences on each node that lead to differences in the clustering1585

coefficient on each node. Here, we use single factor ANOVA F -ratios to1586

screen out treatments that are not statistically significant.1587

The single effects F -ratio is computed as the ratio of the mean square1588

treatment (main) effect and the mean square (variance within) treatment1589

error (Winer, 1971),1590

Fi =
Mean Squaretreatment i
Mean Squareerror i

=
(d̄i. − d̄..)2∑

j(dij−d̄i.)2

B−1

,

where dij are the observed differences at the ith node or node to node i =1591
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1, . . . , n and jth bootstrapped sample j = 1, . . . , B, d̄i. the mean value of1592

the bootstrapped samples at i, and d̄.., the overall population mean. Now,1593

F -ratios where Fi ≥ z(q,1,B−1), being z the F -distribution, are considered1594

statistically significant at the error control level q.1595

The usual ANOVA F -ratios divide main effects by the pooled experimen-1596

tal error, assuming that error variances (within treatment variability) are all1597

equal, which is a strong assumption not usually met in practice. The F -ratio1598

used here allows differences in the experimental error on each treatment.1599

This implies that this F -ratio does not follow exactly an F -distribution,1600

however, the sampling distribution of these F -ratios can be approximated1601

by the F -distribution (Winer, 1971). In addition, ANOVA F -ratios also1602

assume independence (no interaction) on each treatment. In general, this1603

independence is not met in our case, since nodes are neighbors of other1604

nodes. For instance the neighbors of a node with a high clustering coefficient1605

might also have high clustering coefficient, since the neighbors are also in1606

the same cluster. However, we are working here with differences and dif-1607

ferences reduce or eliminate these positive interaction effects. Hence, in our1608

case dependence among treatments should be weak. Nevertheless, if there is1609

dependence among treatments, the results of the F -ratio test are optimistic1610

(Winer, 1971), meaning that more treatments are accepted as influential. In1611

our case, it means that the test never rejects a true influential effect, while1612

non-influential treatments will be rejected by the subsequent FDR tests. The1613

only purpose of this screening test is to reduce the number of non-interesting1614

hypotheses to test using FDR error control, and as we have seen here, this1615

test does just that despite its simplicity and assumptions.1616
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The single effects F -ratio screening is performed here controlling the error1617

rate at q= 0.15 at the global and node level in order to avoid overly reducing1618

the number of hypotheses to be tested, and a 0.05 level of significance at the1619

node-to-node level, when thousands of hypotheses are present.1620

Regression Analysis1621

We tested the statistical significance of different linear regression models1622

including the variables sex (coded as -1 men, +1 women), brain volumes,26
1623

age, and different degrees of interactions, in modeling the probability of con-1624

nection on the whole data set. We found that the following model has sta-1625

tistical significance modeling the connectivity matrices, on average,1626

y = β0 + β1S + β2B + β3A+ β4SB, (17)

where predictors S,B,A represents sex, brain volume, and age respectively,1627

while SB represents the interaction between sex and brain volume. Given1628

the strong correlation between sex and brain size, we employed ridge regres-1629

sion that provides regularization when there is strong collinearity between1630

predictors. The used Matlab implementation of ridge regression also centers1631

and standardize the predictors internally, which improves stability and allow1632

for proper comparison of the regression coefficients.1633

Using the normalization provided by Equation (3), the regression coeffi-1634

cients were β1 = 6.15 × 10−3, β2 = −1.87 × 10−5, β3 = −2.12 × 10−4, β4 =1635

−6.23 × 10−3. Where we can see that the effect of sex is about 328 times1636

26The brain volume was calculated from the manually skull-stripped images in mm3

and then converted to liters.
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larger than that of brain size and about 30 times larger than that of age.1637

However, there is still strong negative interaction due to brain size.1638

We perform an F-test of significance of the regression model using the1639

un-centered and un-standardized predictors. We found that we can reject1640

the null hypothesis that all regression coefficients in the model are zero, with1641

a level of significance of 0.002. Now, testing the significance of each fac-1642

tor (using standard t-test), we found that the sex and age coefficients are1643

statistically significant with a level of significance of 2.8 × 10−4 and 0.048,1644

respectively, but the brain volume coefficient and interaction term are not sta-1645

tistically significant. Given that the effect of age and interaction with brain1646

volume are both negative and much lower than the effect of sex, we disregard1647

those effects in the analysis. The effect of age and brain size (through inter-1648

action) causes a reduction in the statistical power of the analysis performed1649

(since their effect is negative), which means that some brain connectivity dif-1650

ferences due to sex that might have been influential could not been detected.1651

This is a small price to pay in exchange for simplicity in the analysis and1652

proves the importance of the normalization chosen.1653

The regression coefficients for the centered and standardized predictors1654

using the normalization provided by Equation (1) were β1 = 1.52×10−3, β2 =1655

7.93× 10−4, β3 = 2.07× 10−4, β4 = −8.9× 10−3, which means that the sex1656

effect is about 2 times larger than that of brain size, 7 times larger than1657

that of age, and about 2 times the interaction with brain size. Formally,1658

the model is statistically significant, with a significance level of 7.5 × 10−4,1659

and the t-test on each factor reveals that the coefficients of brain size and1660

age are statistically significant with a significance level of 1.5 × 10−7 and1661
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0.035, respectively, while the sex coefficient is only statistically significant at1662

a significance level of 0.18. This means that the brain volume and age are1663

more significant than sex differences and hence any differences found using1664

this normalization alone (without further processing) could be false.1665

The regression coefficients for the centered and standardized predictors1666

using the normalization provided by Equation (2) were β1 = 7.58×10−3, β2 =1667

4.49×10−5, β3 = 3.7×10−4, β4 = −7.6×10−3, which means that the sex effect1668

is about 170 times larger than that of brain size, 20 times larger than that of1669

age, and there is strong interaction with brain size. Formally, the model is1670

statistically significant, with a significance level of 0.05, and the t-test on each1671

factor reveals that the regression coefficients of sex and age are statistically1672

significant with a significance level of 0.007 and 0.046, respectively, while1673

brain size and its interaction with sex are not statistically significant. As can1674

be seen this normalization is almost as good as Equation (3), but we preferred1675

Equation (3), since it is also superior in terms of classification performance1676

(see Section 3.1) and holds the interpretation described above.1677
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Table 1: Sex classification performance (see Section 3.1) obtained from the connectiv-

ity matrix (node-to-node level). We observe significantly improved results when feature

selection is incorporated.

Test All features Feature selection

(2763) (297)

Classification accuracy (%) 49.5 93.0

Sensitivity (%) 56.5 95.5

Specificity (%) 37.3 88.5

Balanced error rate (BER) 0.5313 0.0797

Area under the ROC curve 0.473 0.9203

Kappa statistic -0.067 0.8470

p-value - 0.001

Table 2: Kinship classification performance (see Section 3.1) obtained from the connec-

tivity matrix (node-to-node level).

Test All features Feature selection

(2763) (250)

Accuracy (%) 63.49 88.5 (0.010)

Sensitivity Identical Twins (%) 28.0 80.4

Specificity Identical Twins (%) 88.2 94.5

Sensitivity non-Identical Twins (%) 46.8 86.2

Specificity non-Identical Twins (%) 77.8 96.0

Sensitivity Siblings (%) 28.6 72.2

Specificity Siblings (%) 92.5 97.4

Sensitivity Unrelated People (%) 100.0 99.9

Specificity Unrelated People (%) 88.3 96.9

BER 0.3671 0.1535 (0.016)

ROC area 0.759 0.904 (0.01)

Kappa 0.4796 0.838 (0.017)

p-value - 0.001(0)
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Table 3: Sex classification performance (see Section 3.1) using the clustering coefficient

(node level).

Test All features Feature selection

(70) (53)

Classification accuracy (%) 55.4 62.7

Sensitivity (%) 64.8 89.6

Specificity (%) 37.0 25.2

Balanced error rate (BER) 0.4983 0.4261

Area under the ROC curve 0.502 0.7309

Kappa statistic 0.0035 0.5214

p-value - 0.001

Table 4: Sex classification performance (see Section 3.1) using the generalized communi-

cability matrix (node-to-node level).

Test All features FDR thresholding Feature selection

(4900) (935) (298)

Accuracy (%) 51.8 46.2 92.2

Sensitivity (%) 58.0 45.1 93.7

Specificity (%) 26.4 30.9 89.6

BER 0.5268 0.5780 0.0835

ROC area 0.473 0.429 0.917

Kappa -0.054 -0.139 0.832

p-val - - 0.001
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Table 5: Kinship classification performance (see Section 3.1) using edge betweenness cen-

trality (node-to-node level).

Test All features FDR thresholding Feature selection

(2388) (1031) (251)

Accuracy (%) 57.1 32.14 87.3

Sensitivity Identical Twins (%) 22.0 16.0 76.4

Specificity Identical Twins (%) 84.7 85.6 97.0

Sensitivity non-Identical Twins (%) 40.3 31.3 86.7

Specificity non-Identical Twins (%) 82.2 71.9 92.0

Sensitivity Siblings (%) 25.7 11.4 70.9

Specificity Siblings (%) 91.2 90.8 97.5

Sensitivity Unrelated People (%) 97.0 48.0 98.8

Specificity Unrelated People (%) 83.6 53.9 96.1

BER 0.5636 0.8870 0.1677

ROC area 0.708 0.511 0.8945

Kappa 0.3843 0.0234 0.820

p-val - - 0.001

Table 6: Global topological metrics comparing brain connectivity with random networks.

Metric Human Brain Random Z-score

γ 2.84 (1.44) - -

Clustering Coefficient 0.0766 (0.0130) 0.0148 (0.0019) 13.6

Characteristic Path 77.50 (18.9) 77.5 (18.9) 0

Node Betweeness 155.17 (12) 147.64 (8.72) 0.51

Modularity 0.7029 (0.0195) 0.3380 (0.0187) 13.51

Rentian Scale 0.6958 (0.0394) 0.7957 (0.031) 2.0

PageRank 0.0143 (0.0096) 0.0143 (0.084) 0

Estrada Index 73.1 (0.87) 71.78 (0.55) 1.28

Triangular motif 9 3.8680 (0.7077) 0.589 (0.173) 4.50

Triangular motif 13 1.8591 (0.4685) 0.042 (0.0253) 3.87
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Figure 1: Hierarchy of multiple families of hypothesis testing
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a) b)

Figure 2: Selected features on the connectivity matrix for a) Sex and b) Kinship classifi-

cation.

a) b)

Figure 3: a) Selected features on the communicability matrix for sex classification, b)

Selected features on the edge betweenness centrality matrix for kinship classification. Color

code corresponds to the score given by the feature selection algorithm.
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Figure 4: Z-score sex differences from the connectivity matrix. The color map indicates

where the probability of connection is higher for women (magenta) or for men (cyan).

Color code corresponds to the score given by the feature selection algorithm.
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Figure 5: Z-score Kinship differences using the connectivity matrix. a) Identical twins vs

non-identical multiples, b) identical twins vs siblings, c) identical twins vs unrelated, d)

non-identical multiples vs siblings, e) non-identical multiples vs unrelated, and f) siblings

vs unrelated. The color map indicates where the differences are higher for the first group

(magenta) or for the second (cyan).

83



Figure 6: Sex differences considering a) the clustering coefficient, b) the communicability

eigenvalues.

Figure 7: Sex differences considering a) the edge betweenness centrality, b) the communi-

cability matrix.
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Figure 8: Z-score kinship differences considering the communicability eigenvalues: a) Iden-

tical twins vs non-identical multiples, b) identical twins vs siblings, c) identical twins vs

unrelated, d) non-identical multiples vs siblings, e) non-identical multiples vs unrelated,

and f) siblings vs unrelated.
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Figure 9: Z-score kinship differences considering edge betweenness centrality: a) Identical

twins vs non-identical multiples, b) identical twins vs siblings, c) identical twins vs unre-

lated, d) non-identical multiples vs siblings, e) non-identical multiples vs unrelated, and

f) siblings vs unrelated.
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Table 1: Cortical labels. Labels 1 (left) and 36 (right) were reserved for non-cortical

surfaces.

Left hemisphere Right hemisphere Region

2 37 Caudal anterior cingulate

3 38 Caudal middle frontal

4 39 Corpus callosum

5 40 Cuneus

6 41 Entorhinal

7 42 Fusiform

8 43 Inferior parietal

9 44 Inferior temporal

10 45 Isthmus of the cingulate

11 46 Lateral occipital

12 47 Lateral orbitofrontal

13 48 Lingual

14 49 Medial orbitofrontal

15 50 Middle temporal

16 51 Parahippocampal

17 52 Paracentral

18 53 Pars opercularis

19 54 Pars orbitalis

20 55 Pars triangularis

21 56 Peri-calcarine

22 57 Postcentral

23 58 Posterior cingulate

24 59 Pre-central

25 60 Precuneus

26 61 Rostral anterior cingulate

27 62 Rostral middle frontal

28 63 Superior frontal

29 64 Superior parietal

30 65 Superior temporal

31 66 Supra-marginal

32 67 Frontal pole

33 68 Temporal pole

34 69 Transverse temporal

35 70 Insula
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Table 2: Classification performance (see Section 4.1) using the “raw” connectivity matrices

and different normalizations.

Test Equation (1) Equation (2) Equation (3)

SEX

Accuracy (%) 88.1 89.9 93.0

Sensitivity (%) 92.3 93.8 95.5

Specificity (%) 80.8 83.1 88.5

BER 0.1345 0.1156 0.0797

ROC area 0.8655 0.8844 0.9203

Kappa 0.7397 0.7788 0.8470

p-val 0.001 0.001 0.001

KINSHIP

Accuracy (%) 89.7 87.4 88.5

Sensitivity Identical Twins (%) 87.6 72.0 80.4

Specificity Identical Twins (%) 95.4 94.1 94.5

Sensitivity non-Identical Twins (%) 83.9 82.2 86.1

Specificity non-Identical Twins (%) 95.9 93.4 96.1

Sensitivity Siblings (%) 74.7 83.1 72.3

Specificity Siblings (%) 96.9 97.7 97.3

Sensitivity Unrelated People (%) 99.9 100.0 99.9

Specificity Unrelated People (%) 98.5 98.2 96.92

BER 0.1346 0.1568 0.1535

ROC area 0.9161 0.9009 0.9040

Kappa 0.8556 0.8222 0.8380

p-val 0.001 0.001 0.001
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Table 3: Classification performance (see Section 4.1) using the generalized communicability

matrix and different normalizations.

Test Equation (1) Equation (2) Equation (3)

SEX

Accuracy (%) 88.1 88.3 92.2

Sensitivity (%) 91.4 90.3 93.7

Specificity (%) 82.4 84.7 89.6

BER 0.1311 0.1247 0.0835

ROC area 0.8689 0.8753 0.9165

Kappa 0.7417 0.7475 0.8320

p-val 0.001 0.001 0.001

KINSHIP

Accuracy (%) 85.8 83.6 86.7

Sensitivity Identical Twins (%) 74.8 67.8 71.7

Specificity Identical Twins (%) 94.3 93.6 94.7

Sensitivity non-Identical Twins (%) 83.1 72.6 85.2

Specificity non-Identical Twins (%) 92.3 90.3 94.4

Sensitivity Siblings (%) 66.6 82.5 74.0

Specificity Siblings (%) 96.7 97.4 97.4

Sensitivity Unrelated People (%) 99.9 99.2 99.7

Specificity Unrelated People (%) 98.0 96.8 95.5

BER 0.1891 0.1950 0.1735

ROC area 0.8821 0.8750 0.8908

Kappa 0.8000 0.7684 0.8121

p-val 0.001 0.001 0.001
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Table 4: Classification performance (see Section 4.1) using Edge Betweenness Centrality

and different normalizations.

Test Equation (1) Equation (2) Equation (3)

SEX

Accuracy (%) 93.7 80.7 92.5

Sensitivity (%) 96.4 87.2 97.1

Specificity (%) 89.1 69.2 84.5

BER 0.0727 0.2178 0.0923

ROC area 0.927 0.7822 0.9077

Kappa 0.8631 0.5748 0.8341

p-val 0.001 0.001 0.001

KINSHIP

Accuracy (%) 75.2 75.5 87.3

Sensitivity Identical Twins (%) 53.0 56.4 76.4

Specificity Identical Twins (%) 91.8 91.4 97.0

Sensitivity non-Identical Twins (%) 74.0 72.9 86.7

Specificity non-Identical Twins (%) 89.6 90.5 92.0

Sensitivity Siblings (%) 54.0 45.9 70.9

Specificity Siblings (%) 95.9 94.8 97.5

Sensitivity Unrelated People (%) 94.4 97.3 98.8

Specificity Unrelated People (%) 88.3 89.8 96.1

BER 0.3113 0.3190 0.1677

ROC area 0.8013 0.7987 0.8945

Kappa 0.6460 0.6512 0.8201

p-val 0.001 0.001 0.001
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Table 5: Sex confusion matrices when classifying directly from the connectivity matrix.

All features Women Men

Women 109 84

Men 69 41

Feature selection Women Men

Women 184.4 8.6

Men 12.6 97.4

Table 6: Kinship confusion matrices when classifying directly from the connectivity matrix.

All features Identical Twins Non-identical Multiples Siblings Unrelated

Identical Twins 14 26 5 5

Non-identical Multiples 16 36 12 13

Siblings 9 15 10 1

Unrelated 0 0 0 100

Feature selection Identical Twins Non-identical Multiples Siblings Unrelated

Identical Twins 40.2 4.1 3.7 2.0

Non-identical Multiples 4.8 57.7 2.1 2.4

Siblings 6.3 3.1 25.3 0.3

Unrelated 0.0 0.1 0.0 99.9
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Table 7: Connectivity best features for Sex classification.

Region 1 Region 2 Region 1 Region 2

Corpus callosum (L) Noncortical (L) Lingual (R) Noncortical (R)

Inferior temporal (L) Noncortical (L) Pars opercularis (R) Noncortical (R)

Isthmus of the cingulate (L) Noncortical (L) Caudal middle frontal (R) Caudal middle frontal (R)

Lingual (L) Noncortical (L) Pre-central (R) Caudal middle frontal (R)

Superior temporal (L) Noncortical (L) Rostral anterior cingulate (R) Caudal middle frontal (R)

Insula (L) Noncortical (L) Caudal middle frontal (L) Corpus callosum (R)

Precuneus (L) Caudal anterior cingulate (L) Caudal anterior cingulate (R) Corpus callosum (R)

Medial orbitofrontal (R) Caudal anterior cingulate (L) Rostral anterior cingulate (R) Corpus callosum (R)

Isthmus of the cingulate (L) Caudal middle frontal (L) Insula (R) Corpus callosum (R)

Inferior temporal (L) Corpus callosum (L) Lateral occipital (L) Cuneus (R)

Lateral occipital (L) Corpus callosum (L) Lingual (L) Cuneus (R)

Pars orbitalis (L) Corpus callosum (L) Isthmus of the cingulate (R) Cuneus (R)

Posterior cingulate (L) Corpus callosum (L) Superior temporal (R) Cuneus (R)

Frontal pole (L) Corpus callosum (L) Precuneus (L) Fusiform (R)

Lateral orbitofrontal (R) Corpus callosum (L) Inferior parietal (R) Fusiform (R)

Lingual (R) Corpus callosum (L) Isthmus of the cingulate (R) Fusiform (R)

Peri-calcarine (R) Corpus callosum (L) Precuneus (R) Fusiform (R)

Frontal pole (R) Corpus callosum (L) Rostral middle frontal (R) Fusiform (R)

Superior temporal (L) Cuneus (L) Supra-marginal (R) Fusiform (R)

Isthmus of the cingulate (R) Cuneus (L) Paracentral (R) Inferior parietal (R)

Lingual (L) Entorhinal (L) Pars opercularis (R) Inferior parietal (R)

Parahippocampal (L) Entorhinal (L) Entorhinal (R) Inferior temporal (R)

Fusiform (L) Inferior parietal (L) Caudal anterior cingulate (R) Isthmus of the cingulate (R)

Lingual (L) Inferior parietal (L) Corpus callosum (R) Isthmus of the cingulate (R)

Corpus callosum (L) Inferior temporal (L) Cuneus (R) Isthmus of the cingulate (R)

Inferior parietal (L) Inferior temporal (L) Superior frontal (R) Isthmus of the cingulate (R)

Inferior temporal (L) Inferior temporal (L) Fusiform (R) Lateral occipital (R)

Medial orbitofrontal (L) Inferior temporal (L) Superior parietal (R) Lateral occipital (R)

Superior temporal (L) Inferior temporal (L) Caudal anterior cingulate (L) Lateral orbitofrontal (R)

Caudal anterior cingulate (L) Isthmus of the cingulate (L) Medial orbitofrontal (L) Lateral orbitofrontal (R)

Caudal middle frontal (L) Isthmus of the cingulate (L) Superior frontal (L) Lateral orbitofrontal (R)

Parahippocampal (L) Isthmus of the cingulate (L) Caudal middle frontal (R) Lateral orbitofrontal (R)

Cuneus (R) Isthmus of the cingulate (L) Corpus callosum (R) Lateral orbitofrontal (R)

Peri-calcarine (R) Isthmus of the cingulate (L) Parahippocampal (R) Lateral orbitofrontal (R)

Corpus callosum (L) Lateral occipital (L) Isthmus of the cingulate (L) Lingual (R)

Middle temporal (L) Lateral occipital (L) Lingual (L) Lingual (R)

Superior parietal (L) Lateral occipital (L) Parahippocampal (L) Lingual (R)

Superior temporal (L) Lateral occipital (L) Superior frontal (L) Lingual (R)

Cuneus (R) Lateral occipital (L) Superior parietal (L) Lingual (R)

Lingual (R) Lateral occipital (L) Corpus callosum (R) Lingual (R)

Pars orbitalis (L) Lateral orbitofrontal (L) Paracentral (R) Lingual (R)

Pars triangularis (L) Lateral orbitofrontal (L) Caudal anterior cingulate (R) Medial orbitofrontal (R)

Pre-central (L) Lateral orbitofrontal (L) Middle temporal (R) Medial orbitofrontal (R)

Frontal pole (L) Lateral orbitofrontal (L) Pars orbitalis (R) Medial orbitofrontal (R)

Noncortical (L) Lingual (L) Pre-central (R) Medial orbitofrontal (R)

Cuneus (L) Lingual (L) Inferior parietal (R) Middle temporal (R)

Inferior temporal (L) Medial orbitofrontal (L) Isthmus of the cingulate (R) Middle temporal (R)

Superior temporal (L) Medial orbitofrontal (L) Medial orbitofrontal (R) Middle temporal (R)

Caudal anterior cingulate (R) Medial orbitofrontal (L) Precuneus (R) Middle temporal (R)
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Table 7 – continued from previous page

Region 1 Region 2 Region 1 Region 2

Posterior cingulate (R) Medial orbitofrontal (L) Superior temporal (R) Middle temporal (R)

Peri-calcarine (L) Middle temporal (L) Entorhinal (R) Parahippocampal (R)

Transverse temporal (L) Middle temporal (L) Middle temporal (R) Parahippocampal (R)

Cuneus (L) Parahippocampal (L) Peri-calcarine (R) Parahippocampal (R)

Entorhinal (L) Parahippocampal (L) Precuneus (R) Parahippocampal (R)

Fusiform (L) Parahippocampal (L) Temporal pole (R) Parahippocampal (R)

Inferior parietal (L) Parahippocampal (L) Insula (R) Parahippocampal (R)

Peri-calcarine (L) Parahippocampal (L) Inferior parietal (R) Paracentral (R)

Superior temporal (L) Parahippocampal (L) Lingual (R) Paracentral (R)

Temporal pole (L) Parahippocampal (L) Postcentral (R) Paracentral (R)

Transverse temporal (L) Parahippocampal (L) Posterior cingulate (R) Paracentral (R)

Insula (L) Parahippocampal (L) Noncortical (R) Pars opercularis (R)

Lingual (R) Parahippocampal (L) Lateral orbitofrontal (R) Pars opercularis (R)

Postcentral (L) Paracentral (L) Rostral middle frontal (R) Pars opercularis (R)

Posterior cingulate (L) Paracentral (L) Superior parietal (R) Pars opercularis (R)

Superior parietal (L) Paracentral (L) Insula (R) Pars opercularis (R)

Paracentral (R) Paracentral (L) Corpus callosum (L) Pars orbitalis (R)

Posterior cingulate (R) Paracentral (L) Posterior cingulate (L) Pars orbitalis (R)

Precuneus (R) Paracentral (L) Rostral anterior cingulate (L) Pars orbitalis (R)

Postcentral (L) Pars opercularis (L) Corpus callosum (R) Pars orbitalis (R)

Superior temporal (L) Pars opercularis (L) Rostral middle frontal (R) Pars orbitalis (R)

Pars opercularis (L) Pars orbitalis (L) Caudal anterior cingulate (L) Pars triangularis (R)

Pars triangularis (L) Pars orbitalis (L) Pars orbitalis (R) Pars triangularis (R)

Rostral middle frontal (L) Pars triangularis (L) Corpus callosum (L) Peri-calcarine (R)

Rostral anterior cingulate (R) Pars triangularis (L) Lateral occipital (L) Peri-calcarine (R)

Supra-marginal (L) Peri-calcarine (L) Peri-calcarine (L) Peri-calcarine (R)

Transverse temporal (L) Peri-calcarine (L) Noncortical (R) Peri-calcarine (R)

Lingual (R) Peri-calcarine (L) Corpus callosum (R) Peri-calcarine (R)

Peri-calcarine (R) Peri-calcarine (L) Fusiform (R) Peri-calcarine (R)

Posterior cingulate (R) Peri-calcarine (L) Superior parietal (R) Peri-calcarine (R)

Precuneus (R) Peri-calcarine (L) Paracentral (R) Postcentral (R)

Noncortical (L) Postcentral (L) Supra-marginal (R) Postcentral (R)

Paracentral (L) Postcentral (L) Insula (R) Postcentral (R)

Postcentral (L) Postcentral (L) Cuneus (L) Posterior cingulate (R)

Transverse temporal (L) Postcentral (L) Medial orbitofrontal (L) Posterior cingulate (R)

Lingual (L) Posterior cingulate (L) Paracentral (L) Posterior cingulate (R)

Medial orbitofrontal (L) Posterior cingulate (L) Peri-calcarine (L) Posterior cingulate (R)

Caudal anterior cingulate (L) Pre-central (L) Pre-central (L) Posterior cingulate (R)

Parahippocampal (L) Pre-central (L) Lateral orbitofrontal (R) Posterior cingulate (R)

Posterior cingulate (L) Pre-central (L) Peri-calcarine (R) Posterior cingulate (R)

Precuneus (L) Pre-central (L) Lateral orbitofrontal (R) Pre-central (R)

Superior temporal (L) Pre-central (L) Pars opercularis (R) Pre-central (R)

Supra-marginal (L) Pre-central (L) Caudal anterior cingulate (L) Precuneus (R)

Caudal anterior cingulate (R) Pre-central (L) Inferior temporal (L) Precuneus (R)

Corpus callosum (R) Pre-central (L) Fusiform (R) Precuneus (R)

Posterior cingulate (R) Pre-central (L) Inferior temporal (R) Precuneus (R)

Superior parietal (R) Pre-central (L) Middle temporal (R) Precuneus (R)

Caudal anterior cingulate (L) Precuneus (L) Caudal anterior cingulate (L) Rostral anterior cingulate (R)

Cuneus (L) Precuneus (L) Pre-central (R) Rostral anterior cingulate (R)

Fusiform (L) Precuneus (L) Caudal anterior cingulate (L) Rostral middle frontal (R)
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Table 7 – continued from previous page

Region 1 Region 2 Region 1 Region 2

Pars opercularis (L) Precuneus (L) Pre-central (L) Rostral middle frontal (R)

Posterior cingulate (L) Precuneus (L) Rostral anterior cingulate (L) Rostral middle frontal (R)

Transverse temporal (L) Precuneus (L) Pars opercularis (R) Rostral middle frontal (R)

Insula (L) Precuneus (L) Pars orbitalis (R) Rostral middle frontal (R)

Pre-central (R) Precuneus (L) Rostral anterior cingulate (L) Superior frontal (R)

Pars orbitalis (L) Rostral anterior cingulate (L) Isthmus of the cingulate (R) Superior frontal (R)

Superior temporal (L) Rostral anterior cingulate (L) Lateral orbitofrontal (R) Superior frontal (R)

Insula (L) Rostral anterior cingulate (L) Paracentral (R) Superior frontal (R)

Caudal middle frontal (R) Rostral anterior cingulate (L) Pars triangularis (R) Superior frontal (R)

Caudal middle frontal (L) Rostral middle frontal (L) Posterior cingulate (R) Superior frontal (R)

Medial orbitofrontal (L) Rostral middle frontal (L) Frontal pole (R) Superior frontal (R)

Pars orbitalis (L) Rostral middle frontal (L) Insula (R) Superior frontal (R)

Rostral anterior cingulate (L) Rostral middle frontal (L) Posterior cingulate (L) Superior parietal (R)

Superior temporal (L) Rostral middle frontal (L) Caudal anterior cingulate (R) Superior parietal (R)

Supra-marginal (L) Rostral middle frontal (L) Corpus callosum (R) Superior parietal (R)

Isthmus of the cingulate (L) Superior frontal (L) Isthmus of the cingulate (R) Superior parietal (R)

Paracentral (L) Superior frontal (L) Pars opercularis (R) Superior parietal (R)

Caudal middle frontal (R) Superior frontal (L) Peri-calcarine (R) Superior parietal (R)

Medial orbitofrontal (R) Superior frontal (L) Postcentral (R) Superior parietal (R)

Fusiform (L) Superior parietal (L) Transverse temporal (R) Superior parietal (R)

Lateral occipital (L) Superior parietal (L) Cuneus (R) Superior temporal (R)

Postcentral (L) Superior parietal (L) Inferior parietal (R) Superior temporal (R)

Posterior cingulate (L) Superior parietal (L) Isthmus of the cingulate (R) Superior temporal (R)

Insula (L) Superior parietal (L) Pars triangularis (R) Superior temporal (R)

Isthmus of the cingulate (R) Superior parietal (L) Peri-calcarine (R) Superior temporal (R)

Paracentral (R) Superior parietal (L) Transverse temporal (R) Superior temporal (R)

Corpus callosum (L) Superior temporal (L) Isthmus of the cingulate (L) Supra-marginal (R)

Middle temporal (L) Superior temporal (L) Cuneus (R) Supra-marginal (R)

Pars triangularis (L) Superior temporal (L) Fusiform (R) Supra-marginal (R)

Pre-central (L) Superior temporal (L) Inferior temporal (R) Supra-marginal (R)

Rostral middle frontal (L) Superior temporal (L) Lingual (R) Supra-marginal (R)

Supra-marginal (L) Superior temporal (L) Rostral anterior cingulate (L) Frontal pole (R)

Inferior parietal (L) Supra-marginal (L) Rostral anterior cingulate (R) Frontal pole (R)

Rostral middle frontal (L) Supra-marginal (L) Parahippocampal (R) Temporal pole (R)

Superior frontal (L) Supra-marginal (L) Superior temporal (R) Temporal pole (R)

Superior parietal (L) Supra-marginal (L) Temporal pole (R) Temporal pole (R)

Insula (L) Supra-marginal (L) Insula (R) Temporal pole (R)

Caudal anterior cingulate (R) Frontal pole (L) Fusiform (R) Transverse temporal (R)

Rostral middle frontal (R) Frontal pole (L) Middle temporal (R) Transverse temporal (R)

Temporal pole (L) Temporal pole (L) Peri-calcarine (R) Transverse temporal (R)

Fusiform (L) Transverse temporal (L) Superior temporal (R) Transverse temporal (R)

Lingual (L) Transverse temporal (L) Caudal anterior cingulate (L) Insula (R)

Middle temporal (L) Transverse temporal (L) Superior frontal (L) Insula (R)

Parahippocampal (L) Transverse temporal (L) Corpus callosum (R) Insula (R)

Postcentral (L) Insula (L) Parahippocampal (R) Insula (R)

Precuneus (L) Insula (L) Pars triangularis (R) Insula (R)

Superior parietal (L) Insula (L) Superior frontal (R) Insula (R)

Temporal pole (L) Insula (L) Supra-marginal (R) Insula (R)

Precuneus (L) Noncortical (R) Transverse temporal (R) Insula (R)

Inferior parietal (R) Noncortical (R)
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Table 8: Connectivity best features for kinship classification.

Region 1 Region 2 Region 1 Region 2

Noncortical (L) Noncortical (L) Precuneus (L) Noncortical (R)

Cuneus (L) Noncortical (L) Inferior parietal (R) Noncortical (R)

Fusiform (L) Noncortical (L) Lingual (R) Noncortical (R)

Postcentral (L) Noncortical (L) Temporal pole (R) Noncortical (R)

Paracentral (L) Caudal anterior cingulate (L) Caudal anterior cingulate (L) Caudal middle frontal (R)

Corpus callosum (R) Caudal anterior cingulate (L) Precuneus (L) Caudal middle frontal (R)

Paracentral (R) Caudal anterior cingulate (L) Supra-marginal (R) Caudal middle frontal (R)

Caudal middle frontal (L) Caudal middle frontal (L) Precuneus (L) Corpus callosum (R)

Paracentral (L) Caudal middle frontal (L) Posterior cingulate (R) Corpus callosum (R)

Pars opercularis (L) Caudal middle frontal (L) Peri-calcarine (L) Cuneus (R)

Corpus callosum (R) Caudal middle frontal (L) Lateral occipital (R) Cuneus (R)

Posterior cingulate (R) Caudal middle frontal (L) Parahippocampal (R) Entorhinal (R)

Postcentral (L) Corpus callosum (L) Precuneus (L) Fusiform (R)

Superior parietal (L) Corpus callosum (L) Entorhinal (R) Fusiform (R)

Frontal pole (L) Corpus callosum (L) Fusiform (R) Fusiform (R)

Frontal pole (R) Corpus callosum (L) Lateral occipital (R) Fusiform (R)

Noncortical (L) Cuneus (L) Precuneus (R) Fusiform (R)

Middle temporal (L) Cuneus (L) Noncortical (R) Inferior parietal (R)

Temporal pole (L) Entorhinal (L) Pars triangularis (R) Inferior parietal (R)

Noncortical (L) Fusiform (L) Temporal pole (R) Inferior parietal (R)

Lateral occipital (L) Fusiform (L) Entorhinal (R) Inferior temporal (R)

Lingual (L) Fusiform (L) Temporal pole (R) Inferior temporal (R)

Temporal pole (L) Fusiform (L) Caudal anterior cingulate (L) Isthmus of the cingulate (R)

Noncortical (L) Inferior parietal (L) Lateral occipital (R) Isthmus of the cingulate (R)

Fusiform (L) Inferior parietal (L) Isthmus of the cingulate (L) Lateral occipital (R)

Isthmus of the cingulate (L) Inferior parietal (L) Isthmus of the cingulate (R) Lateral occipital (R)

Lateral occipital (L) Inferior parietal (L) Middle temporal (R) Lateral occipital (R)

Lingual (L) Inferior parietal (L) Supra-marginal (R) Lateral occipital (R)

Postcentral (L) Inferior parietal (L) Caudal middle frontal (R) Lateral orbitofrontal (R)

Inferior parietal (L) Inferior temporal (L) Entorhinal (R) Lateral orbitofrontal (R)

Inferior temporal (L) Inferior temporal (L) Posterior cingulate (R) Lateral orbitofrontal (R)

Isthmus of the cingulate (L) Inferior temporal (L) Cuneus (R) Lingual (R)

Lateral occipital (L) Inferior temporal (L) Entorhinal (R) Lingual (R)

Parahippocampal (L) Inferior temporal (L) Supra-marginal (R) Lingual (R)

Temporal pole (L) Inferior temporal (L) Corpus callosum (L) Medial orbitofrontal (R)

Caudal anterior cingulate (L) Isthmus of the cingulate (L) Parahippocampal (R) Medial orbitofrontal (R)

Postcentral (L) Isthmus of the cingulate (L) Rostral middle frontal (R) Medial orbitofrontal (R)

Supra-marginal (L) Isthmus of the cingulate (L) Insula (R) Medial orbitofrontal (R)

Caudal anterior cingulate (R) Isthmus of the cingulate (L) Entorhinal (R) Middle temporal (R)

Peri-calcarine (R) Isthmus of the cingulate (L) Inferior parietal (R) Middle temporal (R)

Postcentral (R) Isthmus of the cingulate (L) Lateral occipital (R) Middle temporal (R)

Inferior parietal (L) Lateral occipital (L) Parahippocampal (R) Middle temporal (R)

Supra-marginal (L) Lateral occipital (L) Insula (R) Middle temporal (R)

Pars orbitalis (L) Lateral orbitofrontal (L) Isthmus of the cingulate (L) Parahippocampal (R)

Frontal pole (L) Lateral orbitofrontal (L) Entorhinal (R) Parahippocampal (R)

Inferior parietal (L) Lingual (L) Lingual (R) Parahippocampal (R)
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Table 8 – continued from previous page

Region 1 Region 2 Region 1 Region 2

Inferior temporal (L) Medial orbitofrontal (L) Middle temporal (R) Parahippocampal (R)

Paracentral (L) Medial orbitofrontal (L) Temporal pole (R) Parahippocampal (R)

Frontal pole (L) Medial orbitofrontal (L) Corpus callosum (L) Paracentral (R)

Cuneus (L) Middle temporal (L) Pre-central (R) Paracentral (R)

Inferior parietal (L) Middle temporal (L) Transverse temporal (R) Paracentral (R)

Lateral occipital (L) Middle temporal (L) Insula (R) Paracentral (R)

Lateral orbitofrontal (L) Middle temporal (L) Superior frontal (L) Pars opercularis (R)

Noncortical (L) Parahippocampal (L) Pars orbitalis (R) Pars opercularis (R)

Corpus callosum (L) Parahippocampal (L) Pre-central (R) Pars opercularis (R)

Lateral occipital (L) Parahippocampal (L) Insula (R) Pars opercularis (R)

Corpus callosum (R) Parahippocampal (L) Rostral anterior cingulate (L) Pars orbitalis (R)

Medial orbitofrontal (L) Paracentral (L) Superior frontal (L) Pars orbitalis (R)

Superior parietal (L) Paracentral (L) Superior frontal (R) Pars orbitalis (R)

Paracentral (R) Paracentral (L) Rostral anterior cingulate (L) Pars triangularis (R)

Caudal middle frontal (L) Pars opercularis (L) Entorhinal (R) Pars triangularis (R)

Superior temporal (L) Pars opercularis (L) Inferior parietal (R) Pars triangularis (R)

Corpus callosum (R) Pars opercularis (L) Medial orbitofrontal (R) Pars triangularis (R)

Caudal anterior cingulate (L) Pars orbitalis (L) Supra-marginal (R) Pars triangularis (R)

Caudal anterior cingulate (L) Pars triangularis (L) Pars opercularis (R) Postcentral (R)

Pars opercularis (L) Pars triangularis (L) Caudal anterior cingulate (L) Posterior cingulate (R)

Pars orbitalis (L) Pars triangularis (L) Corpus callosum (L) Posterior cingulate (R)

Pars triangularis (L) Pars triangularis (L) Isthmus of the cingulate (L) Posterior cingulate (R)

Insula (L) Pars triangularis (L) Corpus callosum (R) Posterior cingulate (R)

Transverse temporal (L) Peri-calcarine (L) Isthmus of the cingulate (R) Posterior cingulate (R)

Cuneus (R) Peri-calcarine (L) Lateral orbitofrontal (R) Posterior cingulate (R)

Posterior cingulate (L) Postcentral (L) Lingual (R) Posterior cingulate (R)

Pre-central (L) Postcentral (L) Insula (R) Posterior cingulate (R)

Precuneus (L) Postcentral (L) Pars triangularis (R) Pre-central (R)

Superior parietal (L) Postcentral (L) Insula (R) Pre-central (R)

Superior temporal (L) Postcentral (L) Inferior parietal (L) Precuneus (R)

Precuneus (R) Postcentral (L) Inferior temporal (L) Precuneus (R)

Caudal anterior cingulate (R) Posterior cingulate (L) Postcentral (L) Precuneus (R)

Corpus callosum (R) Posterior cingulate (L) Lateral occipital (R) Precuneus (R)

Posterior cingulate (R) Posterior cingulate (L) Lingual (R) Precuneus (R)

Transverse temporal (L) Pre-central (L) Paracentral (R) Precuneus (R)

Superior parietal (R) Pre-central (L) Pre-central (R) Precuneus (R)

Cuneus (L) Precuneus (L) Corpus callosum (L) Rostral anterior cingulate (R)

Lingual (L) Precuneus (L) Frontal pole (R) Rostral anterior cingulate (R)

Paracentral (L) Precuneus (L) Caudal middle frontal (L) Rostral middle frontal (R)

Postcentral (L) Precuneus (L) Rostral anterior cingulate (L) Rostral middle frontal (R)

Caudal middle frontal (R) Precuneus (L) Caudal anterior cingulate (R) Rostral middle frontal (R)

Corpus callosum (R) Precuneus (L) Superior frontal (R) Rostral middle frontal (R)

Fusiform (R) Precuneus (L) Medial orbitofrontal (L) Superior frontal (R)

Isthmus of the cingulate (R) Precuneus (L) Postcentral (L) Superior frontal (R)

Posterior cingulate (R) Precuneus (L) Medial orbitofrontal (R) Superior frontal (R)

Caudal anterior cingulate (L) Rostral anterior cingulate (L) Paracentral (R) Superior frontal (R)

Inferior temporal (L) Rostral anterior cingulate (L) Pars opercularis (R) Superior frontal (R)

Parahippocampal (L) Rostral anterior cingulate (L) Rostral middle frontal (R) Superior frontal (R)

Pars orbitalis (L) Rostral anterior cingulate (L) Corpus callosum (L) Superior parietal (R)

Rostral middle frontal (L) Rostral anterior cingulate (L) Isthmus of the cingulate (L) Superior parietal (R)
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Table 8 – continued from previous page

Region 1 Region 2 Region 1 Region 2

Frontal pole (L) Rostral anterior cingulate (L) Isthmus of the cingulate (R) Superior parietal (R)

Caudal anterior cingulate (R) Rostral anterior cingulate (L) Pre-central (R) Superior parietal (R)

Corpus callosum (R) Rostral anterior cingulate (L) Lateral occipital (R) Superior temporal (R)

Corpus callosum (L) Rostral middle frontal (L) Parahippocampal (R) Superior temporal (R)

Rostral anterior cingulate (L) Rostral middle frontal (L) Superior frontal (R) Superior temporal (R)

Supra-marginal (L) Rostral middle frontal (L) Supra-marginal (R) Superior temporal (R)

Frontal pole (L) Rostral middle frontal (L) Transverse temporal (R) Superior temporal (R)

Insula (L) Rostral middle frontal (L) Corpus callosum (L) Supra-marginal (R)

Caudal anterior cingulate (R) Rostral middle frontal (L) Inferior temporal (R) Supra-marginal (R)

Medial orbitofrontal (L) Superior frontal (L) Pars triangularis (R) Supra-marginal (R)

Middle temporal (L) Superior frontal (L) Postcentral (R) Supra-marginal (R)

Rostral middle frontal (L) Superior frontal (L) Precuneus (R) Supra-marginal (R)

Noncortical (L) Superior parietal (L) Rostral anterior cingulate (L) Frontal pole (R)

Cuneus (L) Superior parietal (L) Medial orbitofrontal (R) Frontal pole (R)

Isthmus of the cingulate (L) Superior parietal (L) Rostral anterior cingulate (R) Frontal pole (R)

Transverse temporal (L) Superior parietal (L) Frontal pole (R) Frontal pole (R)

Superior parietal (R) Superior parietal (L) Noncortical (R) Temporal pole (R)

Noncortical (L) Superior temporal (L) Inferior parietal (R) Temporal pole (R)

Cuneus (L) Superior temporal (L) Temporal pole (R) Temporal pole (R)

Entorhinal (L) Superior temporal (L) Lingual (R) Transverse temporal (R)

Inferior parietal (L) Superior temporal (L) Middle temporal (R) Transverse temporal (R)

Transverse temporal (L) Superior temporal (L) Superior temporal (R) Transverse temporal (R)

Isthmus of the cingulate (L) Supra-marginal (L) Transverse temporal (R) Transverse temporal (R)

Peri-calcarine (L) Supra-marginal (L) Corpus callosum (L) Insula (R)

Rostral middle frontal (L) Supra-marginal (L) Rostral anterior cingulate (L) Insula (R)

Insula (L) Supra-marginal (L) Entorhinal (R) Insula (R)

Caudal anterior cingulate (L) Insula (L) Lingual (R) Insula (R)

Isthmus of the cingulate (L) Insula (L) Medial orbitofrontal (R) Insula (R)

Transverse temporal (L) Insula (L) Parahippocampal (R) Insula (R)

Caudal anterior cingulate (R) Insula (L) Frontal pole (R) Insula (R)
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Table 9: Sex confusion matrices obtained with the generalized communicability topological

metric.

All features Women Men

Women 112 81

Men 81 29

FDR selected features Women Men

Women 106 87

Men 34 76

Feature selection Women Men

Women 180.9 12.1

Men 11.5 98.5
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Table 10: Kinship confusion matrices with the edge betweenness centrality topological

metric.

All features Identical Twins Non-identical Multiples Siblings Unrelated

Identical Twins 11 21 9 9

Non-identical Multiples 18 27 10 12

Siblings 11 11 9 4

Unrelated 2 1 0 97

FDR selected features Identical Twins Non-identical Multiples Siblings Unrelated

Identical Twins 8 12 7 23

Non-identical Multiples 8 21 5 33

Siblings 3 14 4 14

Unrelated 18 26 8 48

Feature selection Identical Twins Non-identical Multiples Siblings Unrelated

Identical Twins 38.2 8.1 2.4 1.3

Non-identical Multiples 3.7 58.1 2.9 2.3

Siblings 2.2 5.7 24.8 2.3

Unrelated 0.2 1 0 98.2
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Table 11: Communicability best features for sex classification.

Region 1 Region 2 Region 1 Region 2

Caudal anterior cingulate (L) Noncortical (L) Temporal pole (L) Temporal pole (L)

Corpus callosum (L) Noncortical (L) Fusiform (L) Transverse temporal (L)

Inferior temporal (L) Noncortical (L) Lingual (L) Transverse temporal (L)

Isthmus of the cingulate (L) Noncortical (L) Middle temporal (L) Transverse temporal (L)

Lingual (L) Noncortical (L) Supra-marginal (R) Transverse temporal (L)

Pars opercularis (L) Noncortical (L) Noncortical (L) Insula (L)

Posterior cingulate (L) Noncortical (L) Pars opercularis (L) Insula (L)

Superior temporal (L) Noncortical (L) Superior parietal (L) Insula (L)

Transverse temporal (L) Noncortical (L) Temporal pole (L) Insula (L)

Insula (L) Noncortical (L) Fusiform (L) Noncortical (R)

Noncortical (L) Caudal anterior cingulate (L) Lateral occipital (L) Noncortical (R)

Corpus callosum (R) Caudal anterior cingulate (L) Lingual (L) Noncortical (R)

Corpus callosum (R) Caudal middle frontal (L) Inferior parietal (R) Noncortical (R)

Inferior temporal (L) Corpus callosum (L) Paracentral (R) Noncortical (R)

Posterior cingulate (L) Corpus callosum (L) Entorhinal (R) Caudal anterior cingulate (R)

Caudal anterior cingulate (L) Cuneus (L) Peri-calcarine (R) Caudal anterior cingulate (R)

Superior temporal (L) Cuneus (L) Temporal pole (R) Caudal anterior cingulate (R)

Parahippocampal (L) Entorhinal (L) Frontal pole (L) Corpus callosum (R)

Medial orbitofrontal (L) Fusiform (L) Caudal anterior cingulate (R) Corpus callosum (R)

Entorhinal (L) Inferior parietal (L) Insula (R) Corpus callosum (R)

Fusiform (L) Inferior parietal (L) Entorhinal (L) Cuneus (R)

Inferior temporal (L) Inferior parietal (L) Lateral occipital (L) Cuneus (R)

Rostral anterior cingulate (L) Inferior parietal (L) Paracentral (L) Cuneus (R)

Inferior parietal (L) Inferior temporal (L) Caudal anterior cingulate (R) Cuneus (R)

Inferior temporal (L) Inferior temporal (L) Isthmus of the cingulate (R) Cuneus (R)

Medial orbitofrontal (L) Inferior temporal (L) Supra-marginal (R) Cuneus (R)

Frontal pole (L) Inferior temporal (L) Cuneus (L) Entorhinal (R)

Caudal anterior cingulate (L) Isthmus of the cingulate (L) Inferior parietal (R) Fusiform (R)

Caudal middle frontal (L) Isthmus of the cingulate (L) Isthmus of the cingulate (R) Fusiform (R)

Precuneus (L) Isthmus of the cingulate (L) Parahippocampal (R) Fusiform (R)

Corpus callosum (R) Isthmus of the cingulate (L) Supra-marginal (R) Fusiform (R)

Cuneus (R) Isthmus of the cingulate (L) Noncortical (R) Inferior parietal (R)

Isthmus of the cingulate (R) Isthmus of the cingulate (L) Lateral occipital (L) Inferior temporal (R)

Corpus callosum (L) Lateral occipital (L) Pars orbitalis (R) Inferior temporal (R)

Middle temporal (L) Lateral occipital (L) Transverse temporal (L) Isthmus of the cingulate (R)

Superior parietal (L) Lateral occipital (L) Caudal anterior cingulate (R) Isthmus of the cingulate (R)

Superior temporal (L) Lateral occipital (L) Corpus callosum (R) Isthmus of the cingulate (R)

Frontal pole (L) Lateral occipital (L) Cuneus (R) Isthmus of the cingulate (R)

Noncortical (R) Lateral occipital (L) Middle temporal (R) Isthmus of the cingulate (R)

Cuneus (R) Lateral occipital (L) Superior frontal (R) Isthmus of the cingulate (R)

Peri-calcarine (R) Lateral occipital (L) Temporal pole (R) Isthmus of the cingulate (R)

Superior temporal (R) Lateral occipital (L) Lateral occipital (L) Lateral occipital (R)

Superior parietal (L) Lateral orbitofrontal (L) Pars triangularis (R) Lateral occipital (R)

Frontal pole (L) Lateral orbitofrontal (L) Peri-calcarine (R) Lateral occipital (R)

Noncortical (L) Lingual (L) Superior parietal (R) Lateral occipital (R)

Cuneus (L) Lingual (L) Caudal anterior cingulate (L) Lateral orbitofrontal (R)

Noncortical (R) Lingual (L) Medial orbitofrontal (L) Lateral orbitofrontal (R)

Corpus callosum (L) Medial orbitofrontal (L) Caudal middle frontal (R) Lateral orbitofrontal (R)

Inferior temporal (L) Medial orbitofrontal (L) Corpus callosum (R) Lateral orbitofrontal (R)
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Table 11 – continued from previous page

Region 1 Region 2 Region 1 Region 2

Pars opercularis (L) Medial orbitofrontal (L) Inferior parietal (R) Lateral orbitofrontal (R)

Transverse temporal (R) Medial orbitofrontal (L) Lateral orbitofrontal (L) Lingual (R)

Inferior parietal (L) Middle temporal (L) Medial orbitofrontal (R) Lingual (R)

Transverse temporal (L) Middle temporal (L) Paracentral (R) Lingual (R)

Entorhinal (L) Parahippocampal (L) Paracentral (L) Medial orbitofrontal (R)

Inferior parietal (L) Parahippocampal (L) Superior parietal (L) Medial orbitofrontal (R)

Superior temporal (L) Parahippocampal (L) Caudal anterior cingulate (R) Medial orbitofrontal (R)

Temporal pole (L) Parahippocampal (L) Paracentral (R) Medial orbitofrontal (R)

Transverse temporal (L) Parahippocampal (L) Posterior cingulate (R) Medial orbitofrontal (R)

Caudal anterior cingulate (R) Parahippocampal (L) Isthmus of the cingulate (L) Middle temporal (R)

Medial orbitofrontal (R) Parahippocampal (L) Precuneus (L) Middle temporal (R)

Frontal pole (R) Parahippocampal (L) Isthmus of the cingulate (R) Middle temporal (R)

Noncortical (L) Paracentral (L) Superior temporal (R) Middle temporal (R)

Inferior parietal (L) Paracentral (L) Noncortical (L) Parahippocampal (R)

Lateral occipital (L) Paracentral (L) Peri-calcarine (L) Parahippocampal (R)

Medial orbitofrontal (L) Paracentral (L) Supra-marginal (L) Parahippocampal (R)

Peri-calcarine (L) Paracentral (L) Parahippocampal (L) Paracentral (R)

Postcentral (L) Paracentral (L) Posterior cingulate (R) Paracentral (R)

Posterior cingulate (L) Paracentral (L) Frontal pole (L) Pars opercularis (R)

Superior parietal (L) Paracentral (L) Rostral middle frontal (R) Pars opercularis (R)

Fusiform (R) Paracentral (L) Insula (R) Pars opercularis (R)

Inferior parietal (R) Paracentral (L) Corpus callosum (L) Pars orbitalis (R)

Inferior temporal (R) Paracentral (L) Paracentral (L) Pars orbitalis (R)

Isthmus of the cingulate (R) Paracentral (L) Corpus callosum (R) Pars orbitalis (R)

Medial orbitofrontal (R) Paracentral (L) Pars orbitalis (R) Pars orbitalis (R)

Paracentral (R) Paracentral (L) Rostral middle frontal (R) Pars orbitalis (R)

Precuneus (R) Paracentral (L) Isthmus of the cingulate (L) Pars triangularis (R)

Fusiform (L) Pars opercularis (L) Fusiform (R) Pars triangularis (R)

Medial orbitofrontal (L) Pars opercularis (L) Corpus callosum (L) Peri-calcarine (R)

Postcentral (L) Pars opercularis (L) Lateral occipital (L) Peri-calcarine (R)

Caudal anterior cingulate (R) Pars opercularis (L) Lingual (L) Peri-calcarine (R)

Caudal middle frontal (R) Pars opercularis (L) Peri-calcarine (L) Peri-calcarine (R)

Entorhinal (R) Pars opercularis (L) Caudal anterior cingulate (R) Peri-calcarine (R)

Fusiform (L) Pars orbitalis (L) Corpus callosum (R) Peri-calcarine (R)

Pars triangularis (L) Pars orbitalis (L) Superior parietal (R) Peri-calcarine (R)

Noncortical (L) Pars triangularis (L) Paracentral (R) Postcentral (R)

Rostral middle frontal (L) Pars triangularis (L) Precuneus (R) Postcentral (R)

Posterior cingulate (R) Pars triangularis (L) Superior parietal (R) Postcentral (R)

Rostral anterior cingulate (R) Pars triangularis (L) Frontal pole (R) Postcentral (R)

Cuneus (L) Peri-calcarine (L) Pre-central (L) Posterior cingulate (R)

Pars triangularis (L) Peri-calcarine (L) Isthmus of the cingulate (R) Pre-central (R)

Rostral middle frontal (L) Peri-calcarine (L) Pars opercularis (R) Pre-central (R)

Transverse temporal (L) Peri-calcarine (L) Temporal pole (R) Pre-central (R)

Caudal anterior cingulate (R) Peri-calcarine (L) Pars orbitalis (L) Precuneus (R)

Lingual (R) Peri-calcarine (L) Rostral middle frontal (L) Precuneus (R)

Posterior cingulate (R) Peri-calcarine (L) Transverse temporal (L) Precuneus (R)

Precuneus (R) Peri-calcarine (L) Cuneus (R) Precuneus (R)

Noncortical (L) Postcentral (L) Fusiform (R) Precuneus (R)

Inferior parietal (L) Postcentral (L) Inferior temporal (R) Precuneus (R)

Lateral orbitofrontal (L) Postcentral (L) Pars triangularis (L) Rostral anterior cingulate (R)
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Table 11 – continued from previous page

Region 1 Region 2 Region 1 Region 2

Paracentral (L) Postcentral (L) Caudal anterior cingulate (L) Rostral middle frontal (R)

Pars opercularis (L) Postcentral (L) Rostral anterior cingulate (L) Rostral middle frontal (R)

Temporal pole (L) Postcentral (L) Caudal anterior cingulate (R) Rostral middle frontal (R)

Caudal anterior cingulate (L) Pre-central (L) Pars opercularis (R) Rostral middle frontal (R)

Medial orbitofrontal (L) Pre-central (L) Pars orbitalis (R) Rostral middle frontal (R)

Parahippocampal (L) Pre-central (L) Caudal anterior cingulate (L) Superior frontal (R)

Supra-marginal (L) Pre-central (L) Pars orbitalis (L) Superior frontal (R)

Caudal anterior cingulate (R) Pre-central (L) Isthmus of the cingulate (R) Superior frontal (R)

Lateral occipital (R) Pre-central (L) Paracentral (R) Superior frontal (R)

Medial orbitofrontal (R) Pre-central (L) Pars triangularis (R) Superior frontal (R)

Superior frontal (R) Pre-central (L) Posterior cingulate (R) Superior frontal (R)

Superior parietal (R) Pre-central (L) Frontal pole (R) Superior frontal (R)

Fusiform (L) Precuneus (L) Insula (R) Superior frontal (R)

Posterior cingulate (L) Precuneus (L) Caudal anterior cingulate (L) Superior parietal (R)

Superior frontal (L) Precuneus (L) Transverse temporal (L) Superior parietal (R)

Insula (L) Precuneus (L) Caudal anterior cingulate (R) Superior parietal (R)

Temporal pole (R) Precuneus (L) Isthmus of the cingulate (R) Superior parietal (R)

Inferior parietal (L) Rostral anterior cingulate (L) Superior temporal (R) Superior parietal (R)

Lateral orbitofrontal (L) Rostral anterior cingulate (L) Inferior parietal (R) Superior temporal (R)

Pars orbitalis (L) Rostral anterior cingulate (L) Middle temporal (R) Superior temporal (R)

Superior parietal (L) Rostral anterior cingulate (L) Pars triangularis (R) Superior temporal (R)

Superior temporal (L) Rostral anterior cingulate (L) Peri-calcarine (R) Superior temporal (R)

Caudal middle frontal (L) Rostral middle frontal (L) Transverse temporal (R) Superior temporal (R)

Pars orbitalis (L) Rostral middle frontal (L) Superior temporal (L) Supra-marginal (R)

Postcentral (L) Rostral middle frontal (L) Transverse temporal (L) Supra-marginal (R)

Superior parietal (L) Rostral middle frontal (L) Cuneus (R) Supra-marginal (R)

Isthmus of the cingulate (R) Rostral middle frontal (L) Fusiform (R) Supra-marginal (R)

Paracentral (L) Superior frontal (L) Cuneus (L) Frontal pole (R)

Pre-central (L) Superior frontal (L) Inferior temporal (L) Frontal pole (R)

Medial orbitofrontal (R) Superior frontal (L) Parahippocampal (L) Frontal pole (R)

Lateral occipital (L) Superior parietal (L) Pars orbitalis (L) Frontal pole (R)

Supra-marginal (L) Superior parietal (L) Peri-calcarine (L) Frontal pole (R)

Insula (L) Superior parietal (L) Posterior cingulate (R) Frontal pole (R)

Isthmus of the cingulate (R) Superior parietal (L) Cuneus (L) Temporal pole (R)

Rostral anterior cingulate (R) Superior parietal (L) Transverse temporal (L) Temporal pole (R)

Pars triangularis (L) Superior temporal (L) Isthmus of the cingulate (R) Temporal pole (R)

Supra-marginal (L) Superior temporal (L) Parahippocampal (R) Temporal pole (R)

Temporal pole (L) Superior temporal (L) Temporal pole (R) Temporal pole (R)

Corpus callosum (L) Supra-marginal (L) Transverse temporal (R) Temporal pole (R)

Lateral orbitofrontal (L) Supra-marginal (L) Medial orbitofrontal (L) Transverse temporal (R)

Pars orbitalis (L) Supra-marginal (L) Parahippocampal (L) Transverse temporal (R)

Posterior cingulate (L) Supra-marginal (L) Pars opercularis (L) Transverse temporal (R)

Pre-central (L) Supra-marginal (L) Pars orbitalis (L) Transverse temporal (R)

Superior frontal (L) Supra-marginal (L) Peri-calcarine (R) Transverse temporal (R)

Superior parietal (L) Supra-marginal (L) Superior temporal (R) Transverse temporal (R)

Precuneus (R) Supra-marginal (L) Noncortical (L) Insula (R)

Lateral orbitofrontal (L) Frontal pole (L) Corpus callosum (R) Insula (R)

Superior parietal (L) Frontal pole (L) Inferior parietal (R) Insula (R)

Caudal anterior cingulate (R) Frontal pole (L) Parahippocampal (R) Insula (R)

Pars triangularis (R) Frontal pole (L) Pars triangularis (R) Insula (R)
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Table 11 – continued from previous page

Region 1 Region 2 Region 1 Region 2

Insula (R) Frontal pole (L) Superior frontal (R) Insula (R)

Caudal anterior cingulate (L) Temporal pole (L) Supra-marginal (R) Insula (R)

Frontal pole (L) Temporal pole (L)
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Table 12: Edge betweenness centrality best features for kinship classification.

Region 1 Region 2 Region 1 Region 2

Caudal middle frontal (L) Noncortical (L) Rostral middle frontal (R) Caudal anterior cingulate (R)

Cuneus (L) Noncortical (L) Superior frontal (R) Caudal anterior cingulate (R)

Fusiform (L) Noncortical (L) Caudal anterior cingulate (L) Caudal middle frontal (R)

Isthmus of the cingulate (L) Caudal anterior cingulate (L) Noncortical (R) Caudal middle frontal (R)

Pars opercularis (L) Caudal anterior cingulate (L) Pars opercularis (R) Caudal middle frontal (R)

Caudal anterior cingulate (R) Caudal anterior cingulate (L) Postcentral (R) Caudal middle frontal (R)

Posterior cingulate (R) Caudal anterior cingulate (L) Rostral middle frontal (R) Caudal middle frontal (R)

Superior frontal (R) Caudal anterior cingulate (L) Posterior cingulate (L) Corpus callosum (R)

Noncortical (L) Caudal middle frontal (L) Precuneus (L) Corpus callosum (R)

Pars opercularis (L) Caudal middle frontal (L) Caudal middle frontal (R) Corpus callosum (R)

Supra-marginal (L) Caudal middle frontal (L) Isthmus of the cingulate (R) Corpus callosum (R)

Lingual (L) Corpus callosum (L) Medial orbitofrontal (R) Corpus callosum (R)

Posterior cingulate (L) Corpus callosum (L) Precuneus (R) Corpus callosum (R)

Pre-central (L) Corpus callosum (L) Cuneus (L) Cuneus (R)

Rostral anterior cingulate (L) Corpus callosum (L) Lingual (R) Cuneus (R)

Superior parietal (L) Corpus callosum (L) Frontal pole (L) Entorhinal (R)

Supra-marginal (L) Corpus callosum (L) Inferior temporal (R) Entorhinal (R)

Isthmus of the cingulate (R) Corpus callosum (L) Entorhinal (R) Fusiform (R)

Lateral occipital (R) Corpus callosum (L) Peri-calcarine (R) Fusiform (R)

Medial orbitofrontal (R) Corpus callosum (L) Precuneus (R) Fusiform (R)

Pars triangularis (R) Corpus callosum (L) Fusiform (R) Inferior parietal (R)

Peri-calcarine (R) Corpus callosum (L) Superior parietal (R) Inferior parietal (R)

Superior parietal (L) Cuneus (L) Supra-marginal (R) Inferior parietal (R)

Cuneus (R) Cuneus (L) Insula (R) Inferior parietal (R)

Middle temporal (L) Entorhinal (L) Fusiform (R) Inferior temporal (R)

Temporal pole (L) Entorhinal (L) Lateral occipital (R) Inferior temporal (R)

Insula (L) Entorhinal (L) Peri-calcarine (R) Inferior temporal (R)

Cuneus (L) Fusiform (L) Superior temporal (R) Inferior temporal (R)

Lateral occipital (L) Fusiform (L) Temporal pole (R) Inferior temporal (R)

Middle temporal (L) Fusiform (L) Parahippocampal (L) Isthmus of the cingulate (R)

Precuneus (L) Fusiform (L) Posterior cingulate (L) Isthmus of the cingulate (R)

Transverse temporal (L) Fusiform (L) Precuneus (L) Isthmus of the cingulate (R)

Noncortical (L) Inferior parietal (L) Caudal anterior cingulate (R) Isthmus of the cingulate (R)

Pars opercularis (L) Inferior parietal (L) Entorhinal (R) Isthmus of the cingulate (R)

Fusiform (L) Inferior temporal (L) Fusiform (R) Isthmus of the cingulate (R)

Precuneus (L) Inferior temporal (L) Paracentral (R) Isthmus of the cingulate (R)

Superior temporal (L) Inferior temporal (L) Peri-calcarine (R) Isthmus of the cingulate (R)

Temporal pole (L) Inferior temporal (L) Middle temporal (R) Lateral occipital (R)

Transverse temporal (L) Inferior temporal (L) Supra-marginal (R) Lateral occipital (R)

Entorhinal (L) Isthmus of the cingulate (L) Transverse temporal (R) Lateral occipital (R)

Lingual (L) Isthmus of the cingulate (L) Rostral anterior cingulate (L) Lateral orbitofrontal (R)

Middle temporal (L) Isthmus of the cingulate (L) Caudal anterior cingulate (R) Lateral orbitofrontal (R)

Supra-marginal (L) Isthmus of the cingulate (L) Fusiform (R) Lateral orbitofrontal (R)

Cuneus (R) Isthmus of the cingulate (L) Rostral middle frontal (R) Lateral orbitofrontal (R)

Parahippocampal (R) Isthmus of the cingulate (L) Superior temporal (R) Lateral orbitofrontal (R)

Peri-calcarine (L) Lateral occipital (L) Insula (R) Lateral orbitofrontal (R)

Superior temporal (L) Lateral occipital (L) Noncortical (R) Lingual (R)

Corpus callosum (L) Lateral orbitofrontal (L) Entorhinal (R) Lingual (R)

Insula (L) Lateral orbitofrontal (L) Posterior cingulate (R) Lingual (R)
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Table 12 – continued from previous page

Region 1 Region 2 Region 1 Region 2

Noncortical (L) Lingual (L) Caudal anterior cingulate (L) Medial orbitofrontal (R)

Cuneus (L) Lingual (L) Corpus callosum (L) Medial orbitofrontal (R)

Fusiform (L) Lingual (L) Medial orbitofrontal (L) Medial orbitofrontal (R)

Isthmus of the cingulate (L) Lingual (L) Corpus callosum (R) Medial orbitofrontal (R)

Parahippocampal (L) Lingual (L) Entorhinal (R) Medial orbitofrontal (R)

Peri-calcarine (L) Lingual (L) Pars orbitalis (R) Medial orbitofrontal (R)

Precuneus (L) Lingual (L) Superior temporal (R) Medial orbitofrontal (R)

Superior parietal (L) Lingual (L) Insula (R) Medial orbitofrontal (R)

Isthmus of the cingulate (R) Lingual (L) Noncortical (R) Middle temporal (R)

Pars triangularis (L) Medial orbitofrontal (L) Inferior parietal (R) Middle temporal (R)

Rostral anterior cingulate (L) Medial orbitofrontal (L) Lateral occipital (R) Middle temporal (R)

Frontal pole (L) Medial orbitofrontal (L) Lateral orbitofrontal (R) Middle temporal (R)

Inferior parietal (L) Middle temporal (L) Entorhinal (R) Parahippocampal (R)

Lingual (L) Middle temporal (L) Fusiform (R) Parahippocampal (R)

Entorhinal (L) Parahippocampal (L) Lingual (R) Parahippocampal (R)

Fusiform (L) Parahippocampal (L) Middle temporal (R) Parahippocampal (R)

Precuneus (L) Paracentral (L) Temporal pole (R) Parahippocampal (R)

Superior frontal (L) Paracentral (L) Insula (R) Parahippocampal (R)

Supra-marginal (L) Pars opercularis (L) Posterior cingulate (R) Paracentral (R)

Rostral anterior cingulate (L) Pars orbitalis (L) Transverse temporal (R) Paracentral (R)

Rostral middle frontal (L) Pars orbitalis (L) Pre-central (R) Pars opercularis (R)

Pars opercularis (L) Pars triangularis (L) Frontal pole (L) Pars orbitalis (R)

Cuneus (L) Peri-calcarine (L) Medial orbitofrontal (R) Pars orbitalis (R)

Pars opercularis (L) Postcentral (L) Parahippocampal (R) Pars triangularis (R)

Posterior cingulate (L) Postcentral (L) Entorhinal (R) Peri-calcarine (R)

Pre-central (L) Postcentral (L) Lingual (R) Peri-calcarine (R)

Precuneus (L) Postcentral (L) Paracentral (L) Postcentral (R)

Insula (L) Postcentral (L) Parahippocampal (R) Postcentral (R)

Caudal middle frontal (L) Posterior cingulate (L) Superior parietal (R) Postcentral (R)

Paracentral (R) Posterior cingulate (L) Transverse temporal (R) Postcentral (R)

Posterior cingulate (R) Posterior cingulate (L) Caudal anterior cingulate (L) Posterior cingulate (R)

Precuneus (R) Posterior cingulate (L) Pre-central (L) Posterior cingulate (R)

Rostral anterior cingulate (R) Posterior cingulate (L) Paracentral (R) Posterior cingulate (R)

Caudal anterior cingulate (L) Pre-central (L) Postcentral (R) Posterior cingulate (R)

Corpus callosum (L) Pre-central (L) Superior frontal (R) Posterior cingulate (R)

Posterior cingulate (L) Pre-central (L) Superior parietal (R) Posterior cingulate (R)

Supra-marginal (L) Pre-central (L) Caudal anterior cingulate (L) Pre-central (R)

Insula (L) Pre-central (L) Pars opercularis (R) Pre-central (R)

Corpus callosum (L) Precuneus (L) Pars orbitalis (R) Pre-central (R)

Postcentral (L) Precuneus (L) Pars triangularis (R) Pre-central (R)

Inferior parietal (R) Precuneus (L) Precuneus (L) Precuneus (R)

Posterior cingulate (R) Precuneus (L) Noncortical (R) Precuneus (R)

Superior parietal (R) Precuneus (L) Rostral middle frontal (L) Rostral anterior cingulate (R)

Frontal pole (L) Rostral anterior cingulate (L) Corpus callosum (R) Rostral anterior cingulate (R)

Lateral orbitofrontal (R) Rostral anterior cingulate (L) Lateral orbitofrontal (R) Rostral anterior cingulate (R)

Rostral middle frontal (R) Rostral anterior cingulate (L) Rostral anterior cingulate (L) Rostral middle frontal (R)

Corpus callosum (L) Rostral middle frontal (L) Caudal anterior cingulate (R) Rostral middle frontal (R)

Lateral orbitofrontal (L) Rostral middle frontal (L) Corpus callosum (R) Rostral middle frontal (R)

Medial orbitofrontal (L) Rostral middle frontal (L) Pars opercularis (R) Rostral middle frontal (R)

Rostral anterior cingulate (L) Rostral middle frontal (L) Frontal pole (R) Rostral middle frontal (R)
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Table 12 – continued from previous page

Region 1 Region 2 Region 1 Region 2

Caudal anterior cingulate (L) Superior frontal (L) Medial orbitofrontal (L) Superior frontal (R)

Temporal pole (L) Superior frontal (L) Paracentral (R) Superior frontal (R)

Caudal anterior cingulate (R) Superior frontal (L) Pars triangularis (R) Superior frontal (R)

Pre-central (R) Superior frontal (L) Corpus callosum (L) Superior parietal (R)

Noncortical (L) Superior parietal (L) Isthmus of the cingulate (L) Superior parietal (R)

Cuneus (L) Superior parietal (L) Superior parietal (L) Superior parietal (R)

Lateral occipital (L) Superior parietal (L) Caudal middle frontal (R) Superior parietal (R)

Postcentral (L) Superior parietal (L) Precuneus (R) Superior parietal (R)

Transverse temporal (L) Superior parietal (L) Supra-marginal (R) Superior parietal (R)

Corpus callosum (R) Superior parietal (L) Transverse temporal (R) Superior parietal (R)

Postcentral (R) Superior parietal (L) Noncortical (R) Superior temporal (R)

Superior parietal (R) Superior parietal (L) Lateral occipital (R) Superior temporal (R)

Insula (L) Superior temporal (L) Transverse temporal (R) Superior temporal (R)

Rostral anterior cingulate (L) Frontal pole (L) Noncortical (R) Supra-marginal (R)

Rostral middle frontal (L) Frontal pole (L) Caudal middle frontal (R) Supra-marginal (R)

Entorhinal (L) Temporal pole (L) Isthmus of the cingulate (R) Supra-marginal (R)

Superior temporal (L) Temporal pole (L) Pars triangularis (R) Supra-marginal (R)

Caudal middle frontal (L) Insula (L) Transverse temporal (R) Supra-marginal (R)

Inferior parietal (L) Insula (L) Lateral orbitofrontal (R) Frontal pole (R)

Superior frontal (L) Insula (L) Rostral anterior cingulate (R) Frontal pole (R)

Transverse temporal (L) Insula (L) Rostral middle frontal (R) Frontal pole (R)

Lingual (R) Noncortical (R) Entorhinal (R) Temporal pole (R)

Supra-marginal (R) Noncortical (R) Fusiform (R) Temporal pole (R)

Transverse temporal (R) Noncortical (R) Parahippocampal (R) Temporal pole (R)

Caudal anterior cingulate (L) Caudal anterior cingulate (R) Superior temporal (R) Temporal pole (R)

Pars triangularis (R) Caudal anterior cingulate (R) Pre-central (R) Insula (R)

Posterior cingulate (R) Caudal anterior cingulate (R) Temporal pole (R) Insula (R)
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Table 13: Differences in the probability of connection (connectivity matrix) due to sex.

Region 1 Region 2 Women Men p-value

Frontal pole (L) Caudal anterior cingulate (L) 0.0032 0 2.10E-03

Medial orbitofrontal (R) Caudal anterior cingulate (L) 0.0115 0.0094 2.66E-02

Transverse temporal (L) Cuneus (L) 0.0011 0 1.94E-02

Paracentral (R) Isthmus of the cingulate (L) 0.0073 0.0053 7.70E-03

Cuneus (R) Lateral occipital (L) 0.0029 0 5.00E-04

Noncortical (L) Lingual (L) 0.0925 0.0631 1.20E-03

Lateral orbitofrontal (L) Parahippocampal (L) 0.0031 0.002 1.93E-02

Peri-calcarine (L) Parahippocampal (L) 0.0055 0.0037 5.00E-03

Posterior cingulate (L) Paracentral (L) 0.1544 0.1383 1.66E-02

Postcentral (L) Pars opercularis (L) 0.0042 0.0017 4.00E-04

Pars opercularis (L) Postcentral (L) 0.0044 0.0022 1.00E-04

Caudal anterior cingulate (R) Posterior cingulate (L) 0.0321 0.0232 1.07E-02

Precuneus (L) Pre-central (L) 0.0087 0.008 1.82E-02

Supra-marginal (L) Superior temporal (L) 0.0321 0.0244 2.80E-03

Pre-central (R) Noncortical (R) 0.003 0.0017 1.81E-02

Inferior parietal (L) Corpus callosum (R) 0.0022 0.0009 1.78E-02

Noncortical (R) Corpus callosum (R) 0.0012 0.0007 1.61E-02

Inferior parietal (R) Corpus callosum (R) 0.0054 0.0015 5.90E-03

Lingual (R) Corpus callosum (R) 0.0028 0.0014 1.70E-02

Corpus callosum (R) Inferior parietal (R) 0.0037 0.0019 3.30E-02

Caudal anterior cingulate (R) Isthmus of the cingulate (R) 0.0209 0.0154 2.79E-02

Caudal anterior cingulate (R) Medial orbitofrontal (R) 0.0164 0.0097 2.40E-03

Pars orbitalis (R) Medial orbitofrontal (R) 0.0378 0.0238 1.78E-02

Middle temporal (R) Parahippocampal (R) 0.0043 0.0027 1.82E-02

Insula (R) Parahippocampal (R) 0.0046 0.0031 1.79E-02

Rostral middle frontal (R) Pars opercularis (R) 0.0269 0.0226 1.04E-02

Superior frontal (R) Pars triangularis (R) 0.0054 0.0037 7.70E-03

Precuneus (R) Postcentral (R) 0.0079 0.0056 5.80E-03

Pars triangularis (L) Rostral anterior cingulate (R) 0.0107 0.0059 2.75E-02

Pre-central (R) Rostral middle frontal (R) 0.0037 0.0029 6.10E-03

Rostral middle frontal (L) Superior frontal (R) 0.0044 0.0023 2.90E-03

Isthmus of the cingulate (R) Superior frontal (R) 0.0077 0.0056 1.50E-02

Superior temporal (R) Transverse temporal (R) 0.0382 0.0306 2.21E-02

Supra-marginal (R) Transverse temporal (R) 0.0171 0.013 9.50E-03

Insula (R) Transverse temporal (R) 0.0118 0.0112 1.24E-02

Pars triangularis (R) Insula (R) 0.1671 0.1428 5.80E-03
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Table 14: Sex differences via the topological clustering coefficient.

Region Women Men p-value

Caudal anterior cingulate (L) 0.0449 0.0385 6.0e-4

Pars orbitalis (L) 0.2715 0.2143 1.8e-3

Rostral anterior cingulate (L) 0.0501 0.0451 1.7e-3

Rostral middle frontal (L) 0.0628 0.0572 6.2e-3

Cuneus (R) 0.1417 0.1224 5.0e-3

Middle temporal (R) 0.0783 0.0729 7.3e-3

Table 15: Sex differences via the topological edge betweenness centrality from region 1 to

region 2.

Region 1 Region 2 Women Men p-value

Medial orbitofrontal (R) Caudal anterior cingulate (R) 3.6796 0.1343 3.0e-4

Non-cortical (L) Lingual (L) 10.0475 3.8471 3.0e-4

Lingual (L) Parahippocampal (L) 9.5410 2.9989 4.0e-4

Supra-marginal (R) Peri-calcarine (L) 0.0470 0.0003 2e-4

Precuneus (R) Corpus callosum (R) 2.6160 0.4481 3e-4
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Table 16: Sex differences via the topological communicability matrix from region 1 to

region 2.

Region 1 Region 2 Women Men p-value

Lingual (R) Fusiform (L) 0.000193818 6.6184E-05 0.00E+00

Lingual (R) Parahippocampal (L) 1.44873E-05 1.18653E-06 0.00E+00

Frontal pole (R) Parahippocampal (L) 2.02031E-06 3.4342E-08 2.00E-04

Transverse temporal (R) Parahippocampal (L) 3.76227E-07 3.06979E-08 1.00E-04

Parahippocampal (L) Pars orbitalis (L) 6.93337E-06 9.09265E-07 2.00E-04

Parahippocampal (R) Rostral middle frontal (L) 6.00877E-06 7.85872E-07 2.00E-04

Medial orbitofrontal (R) Superior parietal (L) 6.58429E-05 2.26133E-05 3.00E-04

Lateral occipital (L) Medial orbitofrontal (R) 1.74974E-06 3.49259E-07 2.00E-04

Middle temporal (L) Medial orbitofrontal (R) 4.61992E-05 7.96382E-08 2.00E-04

Superior parietal (L) Medial orbitofrontal (R) 1.16508E-05 3.44506E-06 2.00E-04

Superior temporal (L) Medial orbitofrontal (R) 7.71885E-06 3.86133E-07 3.00E-04

Inferior parietal (R) Transverse temporal (R) 0.000685963 0.000223199 3.00E-04
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(a)

(b)

Figure 1: Brain modularity obtained from the average of the brain connectivity matrices,

a) level I, b) level II. Different colors indicate different modules. The numbers correspond

to the cortical regions indicated in Table 1 (main document), and their localization in the

figure correspond to the geometric center of each region in the center of the axial plane.
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Figure 2: Motifs of size three (taken from Sporns, O., Kotter, R., 2004. Motifs in brain

networks. PLoS Biol. 2, e369.
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(a) (b)

(c) (d)

Figure 3: Levels of sparsity (proportion of non-zeros) of the mean connectivity matrix

thresholded at different values. a) No thresholded, level of sparsity 0.564, b) thresholded

at 0.0125, level of sparsity 0.151, c) thresholded at 0.025, level of sparsity 0.116, and c)

thresholded at 0.0375, level of sparsity 0.095.
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Figure 4: Sex differences considering global topological metrics.
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Figure 5: Z-score kinship differences considering global topological metrics: a) Identical

twins vs non-identical multiples, b) identical twins vs siblings, c) identical twins vs unre-

lated, d) non-identical multiples vs siblings, e) non-identical multiples vs unrelated, and

f) siblings vs unrelated.
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Selected Results Using Diffusion Tensor-Tractography
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(a) (b)

Figure 6: Selected features on the connectivity matrix for a) sex and b) kinship classifica-

tion. Color code corresponds to the score given by the feature selection algorithm.

(a) (b)

Figure 7: Z-score sex differences from a) the connectivity matrix, b) the communicability

matrix. The color map indicates where the probability of connection is higher for women

(magenta) or for men (cyan).
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a) b)

c) d)

e) f)

Figure 8: Z-score kinship differences considering the communicability eigenvalues: a) Iden-

tical twins vs non-identical multiples, b) identical twins vs siblings, c) identical twins vs

unrelated, d) non-identical multiples vs siblings, e) non-identical multiples vs unrelated,

and f) siblings vs unrelated.
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